genetic

Microbiome environmental shifts differ between two co-occurring octocoral hosts

ABSTRACT: Corals harbor a complex suite of beneficial microbial symbionts. Shuffling the composition of these symbionts could, in theory, help the host withstand rapidly emerging or geographically varying stressors without requiring genetic change to the coral itself. The relative impact of host qualities on microbiome (bacteria) composition should provide insight into the extent that shifting microbial symbionts can play in resilience to environmental disturbance on reefs. We sought to assess the differences in microbiome composition across a large spatial scale (between Puerto Rico and Bonaire; >700 km apart) and in response to localized anthropogenic impacts in 2 co-occurring Caribbean soft corals (Eunicea flexuosa and Gorgonia ventalina) with well-documented differing degrees of population genetic differentiation. Host species was the strongest determinant of microbiome composition, with between-hosts distinction due largely to differences in the abundant genera Endozoicomonas and Mycoplasma. Interestingly, the microbiome of the more genetically subdivided G. ventalina showed stronger differentiation between islands and in response to local anthropogenic impacts than the less subdivided E. flexuosa. For both hosts, anthropogenic impacts on microbiome composition were stronger in Bonaire. Again, Endozoicomonas was responsible for much of the differentiation between and within islands and included host- and island-specific sequence variants. The level of intra-species microbiome variation mirrored the known geographic differentiation of their hosts, a trend that is consistent in the literature for 8 other coral species. Thus, while potentially adaptive bacteria may shuffle in response to environmental changes, our findings suggest that most changes to microbiomes are likely constrained by host genetics.

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Document
Geographic location
Bonaire

Globally intertwined evolutionary history of giant barrel sponges

Abstract

Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

Date
2017
Data type
Other resources
Theme
Research and monitoring
Geographic location
Curacao