nitrogen

Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water owing through these systems, which is generally assumed to equal
in situ conditions, but may change due to the presence of biofouling organisms. Signi cantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and lter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the in uence of the presence and absence of the biofouling community on the functioning of the lter-feeding sponge Halisarca caerulea, by determining its choanocyte ( lter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Document
Journal

Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean

Seagrasses comprise 78 species and are rarely invasive. But the seagrass Halophila stipulacea, firstly recorded in the Caribbean in the year 2002, has spread quickly throughout the region. Previous works have described this species as invasive in the Caribbean, forming dense mats that exclude native seagrass species. During a reconnaissance field survey of Caribbean seagrass meadows at the islands of Bonaire and Sint Maarten in 2013, we observed that this species was only extremely dense at 5 out of 10 studied meadows. Compared to areas with sparse growth of H. stipulacea, these dense meadows showed consistently higher nutrient concentrations, as indicated by higher leaf tissue N contents of the seagrass Thalassia testudinum (dense when C:N < 22.5) and sediments (dense when %N > 11.3). Thus, the potential invasiveness of this non-native seagrass most likely depends on the environmental conditions, especially the nutrient concentrations.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
St. Maarten

Nutrient Enrichment and Eutrophication on Fringing Coral Reefs of Bonaire and Curaçao, Netherlands Antilles, 2006-2008

Land-based nutrient pollution is a major stressor on coral reef communities around the Caribbean region and globally. To assess the status of nutrient enrichment and eutrophication on Bonaire and Curacao’s coral reefs, we conducted a comparative nutrient monitoring program that included seasonal sampling for nutrients (ammonium, nitrate, DIN, SRP, TDN, TDP), phytoplankton biomass (Chl a), stable nitrogen isotopes (ð15N) in reef macroalgae, and biotic cover (point count analysis of video transect data) of shallow and deep reef sites between March 2006 and June 2008. Ammonium dominated the DIN pool on both islands and the highest concentrations (~10 µM) occurred on Bonaire’s reef sites adjacent to the Cargill salt ponds. DIN concentrations averaged > 1 µM on both shallow and deep reefs of both islands, indicating that these reefs are now above the DIN threshold noted to support expansion of algal turf, macroalgae and coral diseases. SRP concentrations averaged ~ 0.1 µM on both islands, a level that also represents the SRP threshold for eutrophication on coral reefs. DON and DOP dominated the TDN and TDP pools; TDN/TDP ratios averaged 52 on Bonaire and 45 on Curacao, indicating strong P-limitation of algal growth. Mean Chl a concentrations were higher on Curacao (0.25 µg/l) than Bonaire (0.19 µg/l) and the highest Chl a concentrations on both islands occurred on reefs adjacent to urbanized, nutrient enriched areas. In contrast, low Chl a values of ~ 0.05-0.1 µg/l occurred at the upstream reef sites and the offshore reference site, underscoring the importance of land-based nutrient enrichment to microbial growth and eutrophication on fringing reefs of both islands. The highest macroalgal ð15N values (> + 3 ‰) occurred at the MegaPier and Piscadera Bay on Curacao, which reflects the highest watershed sewage nitrogen inputs of all reef sites in the study. The lower ð15N (< + 2 ‰) values at the other reef sites reflect lower levels of sewage treatment as well as contributions from other nitrogen sources (nitrogen fixation, atmospheric inputs) that have lower source ð15N values. Reefs on both islands were dominated (~ 75 % cover) by benthic algae but showed distinct differences in algal composition; Bonaire’s reefs had high cover of turf and low cover of macroalgae compared to the opposite pattern on Curacao. Our results suggest that the recent expansion of benthic algae and loss of coral cover on reefs in Bonaire and Curacao are not simply the result of top-down human pressures (e.g., overfishing) alone, but also reflect strong bottom-up effects from land-based nutrient pollution.

The data of the study can be found here

Date
2011
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Curacao
Error | Dutch Caribbean Biodiversity Database

Error

The website encountered an unexpected error. Please try again later.