Marjolijn J.A. Christianen

Battle for the mounds: Niche competition between upside-down jellyfish and invasive seagrass

In tropical ecosystems, autotroph organisms are continuously competing for space, with some plant species benefiting from disturbances such as fire, grazing, or bioturbation that clear habitat (Pulsford et al. 2016). These disturbances can open up layers of vegetation, thereby promoting colonization of opportunistic species that would have been competitively inferior without disturbance (Castorani et al. 2018). Opportunistic fast-growing species also include often invasive species that are therefore also likely to increase in dominance after disturbance (Altman and Whitlatch 2007). In seagrass meadows in the southern Caribbean, we observed that the marine invasive plant Halophila stipulacea uses bioturbation mounds, created by burrowing infauna such as sea cucumbers and shrimp (see Suchanek 1983), to colonize new habitats (Figure 1a, b). On Bonaire and Curaçao, in habitats with ~100% native Thalassia testudinum cover, invasive H. stipulacea often at first only occurred on bioturbation mounds that smothered native T. testudinum seagrass, likely due to fragmentation and subsequent settlement (Smulders et al. 2017). These observations suggest that bioturbation mounds serve as starting points for further invasion (Fig. 1c).  

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Document
Journal
Geographic location
Curacao

Fish grazing enhanced by nutrient enrichment may limit invasive seagrass expansion

The success of invasive macrophytes can depend on local nutrient availability and consumer pressure, which may interact. We therefore experimentally investigated the interacting effects of nutrient (nitrogen and phosphorus) addition, the exclusion of large herbivorous fishes and mimicked grazing on the expansion rates of the invasive seagrass Halophila stipulacea. The experiments were established on Bonaire and Aruba, two islands in the southern Caribbean, which differ in fish community structure. We observed that multiple Caribbean fish species feed on H. stipulacea. At both study sites, nutrient enrichment decreased invasive leaf carbon:nitrogen ratios. However only on Bonaire, where herbivore fish abundance was 7 times higher and diversity was 4.5 times higher, did nutrient enrichment result in a significant reduction of H. stipulacea expansion into native Thalassia testudinum meadows. This effect was likely due to increased herbivory on nutrient enriched seagrass leaves, as we found that excluding large herbivorous fish (e.g. parrotfish) doubled invasive expansion rates in bare patches on Bonaire. On Aruba, H. stipulacea expansion rates were higher overall, which coincided with lower abundances and diversity of native fishes, and were limited by mimicked fish grazing. We suggest that top-down control by the native fish community may counteract eutrophication effects by increased grazing pressure on nutrient-rich invasive seagrass leaves. We conclude that diverse and abundant herbivore communities likely play an important role in limiting invasion success and their conservation and restoration may serve as a tool to slow down seagrass invasions.

Date
2021
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Aruba
Bonaire

Population recovery changes population composition at a major southern Caribbean juvenile developmental habitat for the green turtle, Chelonia mydas

Understanding the population composition and dynamics of migratory megafauna at key developmental habitats is critical for conservation and management. The present study investigated whether diferential recovery of Caribbean green turtle (Chelonia mydas) rookeries infuenced population composition at a major juvenile feeding ground in the southern Caribbean (Lac Bay, Bonaire, Caribbean Netherlands) using genetic and demographic analyses. Genetic divergence indicated a strong temporal shift in population composition between 2006–2007 and 2015–2016 (φST=0.101, P<0.001). Juvenile recruitment (<75.0cm straight carapace length; SCL) from the north-western Caribbean increased from 12% to 38% while recruitment from the eastern Caribbean region decreased from 46% to 20% between 2006–2007 and 2015–2016. Furthermore, the product of the population growth rate and adult female abundance was a signifcant predictor for population composition in 2015–2016. Our results may refect early warning signals of declining reproductive output at eastern Caribbean rookeries, potential displacement efects of smaller rookeries by larger rookeries, and advocate for genetic monitoring as a useful method for monitoring trends in juvenile megafauna. Furthermore, these fndings underline the need for adequate conservation of juvenile developmental habitats and a deeper understanding of the interactions between megafaunal population dynamics in diferent habitats.

Referenced in BioNews 31 article "Genetic Testing to Measure Sea Turtle Conservation Success"

Date
2019
Data type
Scientific article
Theme
Education and outreach
Research and monitoring
Geographic location
Bonaire