ncestrally Shared Regenerative Mechanisms Across the Metazoa: A Transcriptomic Case Study in the Demosponge Halisarca caerulea

Regeneration is an essential process for all multicellular organisms, allowing them to recover effectively from internal and external injury. This process has been studied extensively in a medical context in vertebrates, with pathways often investigated mechanistically, both to derive increased understanding and as potential drug targets for therapy. Several species from other parts of the metazoan tree of life, noted for their regenerative prowess, have previously been targeted for study. This allows us to understand their regenerative mechanisms and see how they could be adapted for use in medicine. Species in clades such as Hydra, planarians and echinoderms can regenerate large portions of their body, the former two clades being able to completely regenerate from even a small portion of their somatic tissue. Less well-documented for their regenerative abilities are sponges. This is surprising, as they are both one of the earliest-branching extant metazoan phyla on Earth, and are rapidly able to respond to injury. Their sessile lifestyle, lack of an external protective layer, inability to respond to predation and filter-feeding strategy all mean that regeneration is often required. In particular the demosponge genus Halisarca has been noted for its fast cell turnover and ability to quickly adjust its cell kinetic properties to repair damage through regeneration. However, while the rate and structure of regeneration in sponges has begun to be investigated, the molecular mechanisms behind this ability are yet to be catalogued. Here we describe the assembly of a reference transcriptome for Halisarca caerulea, along with additional transcriptomes noting response to injury before, shortly following (2 hrs post-), and 12 hrs after trauma. RNAseq reads were assembled using Trinity, annotated, and samples compared, to allow initial insight into the transcriptomic basis of sponge regenerative processes. These resources are deep, with our reference assembly containing more than 92.6% of the BUSCO Metazoa set of genes, and well-assembled (N50s of 836, 957, 1,688 and 2,032 for untreated, 2h, 12h and reference transcriptomes respectively), and therefore represent excellent initial resources as a bedrock for future study. The generation of transcriptomic resources from sponges before and following deliberate damage has allowed us to study particular pathways within this species responsible for repairing damage. We note particularly the involvement of the Wnt cascades in this process in this species, and detail the contents of this cascade, along with cell cycle, extracellular matrix and apoptosis-linked genes in this work. This resource represents an excellent starting point for the continued development of this knowledge, given H. caerulea ’s ability to regenerate and position as an outgroup for comparing the process of regeneration across metazoan lineages. With this resource in place, we can begin to infer the regenerative capacity of the common ancestor of all extant animal life, and unravel the elements of regeneration in an often-overlooked clade.

Back to search results