A Modeling Study of the Principal Rainband in Hurricane Matthew (2016) and the Influence of Remote Terrain on Hurricane Structure During its Intensification in the Southern Caribbean

Predicting the intensity of hurricanes remains a monumental challenge for hurricane forecasters. Many factors can influence the intensity of hurricanes, including the strength, frequency, and spatial distribution of hurricane rainbands (band of precipitation). The hypothesis for this study is that terrain distant from the hurricane center can alter the hurricane environment and cause more frequent and stronger rainbands to form. To assess this hypothesis, I use a weather model to simulate Hurricane Matthew (2016) while it was interacting with remote terrain over northern South America on September 30 - October 1, 2016. Then I use the same model, but with terrain height reduced by 50% over northern South America and analyze the similarities and differences in the hurricane structure and rainband patterns. The results of this study suggest that terrain did not alter the peak rain rates in the hurricane rainbands but may have caused more frequent, widespread, and prolonged precipitation. Also, differences in hurricane structure were apparent when comparing the two model simulations. The reduced terrain simulation produced a weaker hurricane, lending some evidence to support the hypothesis that terrain may have played a role in altering the hurricane structure. These results demonstrate the potential importance of distant terrain on forecasting hurricane precipitation and intensity.

Back to search results