SIDS

The Vulnerable Future of Bonaire A direct climate damage assessment of the built environment of Bonaire

Part of the larger The impacts of climate change on Bonaire (2022-present) report available here.
 

Summary

This study aims to identify the extent to which Bonaire’s buildings and critical infrastructure will be directly impacted by future climate change, focusing on floods and storms. To do so, we combine open-source information on exposure and vulnerability with locally acquired detailed information through interviews and fieldwork. We introduce a new method, called neighbourhood sampling, to produce accurate local data on building values to overcome data scarcity. The results show that in 2050 a 1/100 flood event may affect at least 54 buildings, depending on the climate scenario, most of which are residential along the southern coastline, leading to a maximum of 14.4 USDm in damages. In 2050, no critical infrastructure other than roads will be hit by a flood. Using our approach, we find no damages due to storm hazards, which can be attributed to the limited availability of knowledge on wind vulnerability for Bonaire. The results are assumed to be underestimated due to inaccuracy in the applied hazard intensity maps, which can significantly impact the estimated flooding damages and associated costs. This research is anticipated to serve as a foundation for more sophisticated local climate hazard research on scarce data locations, and Bonaire specifically. Moreover, it provides a starting point for further research on adaptation measures on Bonaire, as it shows which areas are most vulnerable to flooding.

Date
2022
Data type
Research report
Theme
Education and outreach
Research and monitoring
Geographic location
Bonaire

The Impacts of Climate Change on Bonaire - Synthesis Report

Part of the larger report available here.

 

Executive summary

Small islands are particularly vulnerable to climate change because of their fragile ecosystems, small economies, and often extensive, low-lying coastal areas. Therefore, small islands, such as present in the Caribbean Netherlands, are expected to suffer excessively from rising temperatures, changes in precipitation, sea-level rise, coral bleaching, cyclones, droughts and floods. Despite this widespread conviction, scientific evidence of these effects in the Caribbean Netherlands is scarce, and as a result, limited adaptation strategies are developed or implemented by local and Dutch governments. 

In this study, an analysis is conducted assessing the impacts of climate change for the island of Bonaire. Given the uncertainty regarding the actual level of climate change in the future, four universally recognised scenarios are simulated, ranging from an optimistic scenario “SSP1-1.9” (corresponding to a mean temperature rise of 1.4°C at the end of the 21st century relative to pre-industrial levels), which assumes climate change will  modestly increase relative to current levels, to a pessimistic scenario “SSP5-8.5” (corresponding to a mean temperature rise of 4.4°C at the end of the 21st century relative to pre-industrial levels), which suggests very high levels of climate change. Impacts are measured and reported at different moments in time, mainly looking at the years 2050 and 2150, representing short-term and long-term effects of climate change, respectively. A mix of methods from various scientific disciplines are used to estimate the impacts of climate change, including climate and flood models, ecological-economic models, as well as social-science methods such as social media analysis, participatory mapping and key-informant interviews. Although the subcomponents of the study are systematically aligned and integrated, four topics can be distinguished: the estimation of the biophysical impacts, the modelling of economic effects, the identification of socio-cultural effects, and the exploration for potential adaptation options. 

First, we analyse the expected bio-physical and environmental changes associated with different climate projections. The applied flood model simulations reveal that, already by 2050, sea-level rise will cause permanent inundation of parts of the low-lying nature reserves of the saliñas, Lac Bay and Klein Bonaire, thereby altering the extent and dynamics of these areas. Increasing storms are expected to double this inundated area, with an estimated surface of around 8 km2 comprising both permanently and temporarily flooded areas. With climate change increasing over time, sea-level rise and coastal storm inundation will further expand the flooded surface area of Bonaire by 2150, ranging from 14.3 km2 to 32.2 km2, depending on the climate scenario. These flood simulations clearly identify Bonaire's high-risk built-up areas: Belnem and other areas in Kralendijk. But this is not the complete picture; coral reefs are extremely vulnerable to temperature increase, acidification and extreme storms, and our study predicts significant declines of the reef health index of the coral reefs of Bonaire in three of the four climate scenarios already by 2050. Since coral reefs currently act as a natural buffer against waves on Bonaire, the loss of this important ecosystem will further amplify the flooding caused by climate change. 

Second, we estimate the expected economic effects associated with climate change, including impacts on economic development, the built environment and infrastructure. The economic impact is mainly felt through damage costs caused by floods as well as negative effects on tourism caused by the loss of corals. Storms are expected to largely affect Kralendijk and Belnem under the worst climate scenario, resulting in estimated damage costs of US$317 million by 2050. Since permanently inundated buildings are not included in the damage costs projections, these costs are likely to be on the conservative side. As a large part of the damaged structures are in key areas, and numerous coastal and southern roads on the island will be unusable, flood hazards will not only disrupt entire neighbourhoods but also make it impossible for emergency services to reach these areas and buildings. Moreover, we estimate that the economy will be negatively affected by the loss of coral reefs since numerous valuable dive sites will be severely degraded. In the worst climate scenario, coral reef degradation may lead to a reduction of quality dive sites from 86 to 12 and a subsequent reduction in dive tourist arrivals of more than 100 thousand visitors by 2050, causing a contraction in Bonaire’s economy of roughly 25%.

Third, we identified the expected socio-cultural effects associated with the climate change in terms of loss of cultural heritage and health impacts. The tangible cultural impact is felt through the permanent flooding of key locations with cultural significance for Bonaireans, such as the slave huts and the house at Boca Slagbaai. Loss of cultural heritage may have severe impacts on society, as it may lead to a decline in cultural identity and social cohesion. The intangible cultural impact of extreme weather events and rising temperatures includes pressures on the traditional ways of life of Bonaire, including fishing, agriculture, and festivities. Additionally, numerous experts on Bonaire reported that the effects of climate change on Bonaireans’ health, such as changes in vector-borne disease incidence and heat-related stress, are already observed and are likely to increase with climate change. This impact is further magnified with the ageing of the population on Bonaire, making the people even more susceptible to heat-related stress disorders. 

Fourth, we evaluate several adaptation measures to understand which management alternatives Bonaire could implement to cope with the negative consequences of climate change. Potential adaptation strategies include nature-based solutions such as the conservation of coral reefs and the restoration of coastal vegetation, which contribute to the prevention of flooding. Moreover, decision-makers should consider investing in various heat mitigation strategies, such as climate-sensitive building designs, artificial and natural shading, as well as information programmes to educate the population on how to protect themselves from high-temperature exposure. We conclude that, although the impacts of climate change necessitate immediate action, decision-makers should also focus on the longer term, such as 2150 and beyond, as the effects of climate change will worsen significantly over time. 

Since our study did not address all effects of climate change and since climate research with regional and local precision is still in development, the impacts presented in our study can be regarded as preliminary lower-bound estimates. In other words, additional research may generate estimates of even more severe impacts of climate change in Bonaire. In addition, we like to emphasise that there is little knowledge about the effects of climate change in the Dutch Caribbean at the present time. This study is the first attempt to map and quantify a broad range of climate change effects for Bonaire, which is only one of the six islands in the Caribbean Netherlands. Because the research results are unique for Bonaire, we recommend conducting similar studies for the other Caribbean islands in the Kingdom of the Netherlands. 

 

Date
2022
Data type
Other resources
Theme
Education and outreach
Research and monitoring
Geographic location
Bonaire

The impacts of climate change on Bonaire (2022-present)

Small islands are particularly vulnerable to climate change because of their fragile ecosystems, small economies, and often extensive, low-lying coastal areas.

Therefore, small islands, such as present in the Caribbean Netherlands, are expected to suffer excessively from rising temperatures, changes in precipitation, sea level rise, coral bleaching, cyclones, droughts and floods. Yet, scientific evidence of these effects in the Caribbean Netherlands is scarce.

In this study, an analysis is conducted assessing the impacts of climate change for the island of Bonaire. A mix of methods is used to estimate the impacts of climate change, including climate and flood models, ecological-economic models, as well as social-science methods such as social media analysis and participatory mapping. Four sub-studies can be distinguished: the estimation of the biophysical impacts, the modelling of economic effects, the identification of socio-cultural effects, and the exploration for potential adaptation options.

The main findings of the study include the following:

  • Already by 2050, sea level rise will cause permanent inundation of parts of the low-lying nature reserves of the saliñas, Lac Bay and Klein Bonaire. The flooded surface area will increase further by 2150, threatening Bonaire's high-risk built-up areas such as Belnem and other areas in Kralendijk. The loss of coral reefs as a natural buffer will amplify these effects.
  • The economic impact of climate change is mainly felt through damage costs caused by floods as well as negative effects on tourism caused by the loss of corals. Storms and floods are expected to cause an estimated damage costs of US$317 million by 2050. The degradation of coral reefs leads to the degradation or loss of the majority of dive sites on Bonaire, which may cause a reduction in tourist arrivals of more than 100 thousand visitors.
  • Climate change is also expected to severely cause loss of cultural heritage and health impacts on Bonaire. Among others, this includes the permanent flooding of key locations with cultural significance for Bonaireans, such as the slave huts and the house at Boca Slagbaai. Additionally, climate change is expected to affect Bonaireans’ health, such as changes in vector-borne disease incidence and heat-related stress.
  • Potential adaptation strategies against climate change on Bonaire include nature-based solutions such as the conservation of coral reefs and the restoration of coastal vegetation, which contribute to the prevention of flooding. We conclude that, although the impacts of climate change necessitate immediate action, decision-makers should also focus on the longer term, such as 2150 and beyond, as the effects of climate change will worsen significantly over time.

For more information about the study or sub-studies, download the following reports:

Date
2022
Data type
Research report
Geographic location
Bonaire

A Sustainable Energy Transition Case Study on Aruba

Abstract

This research identifies opportunities to accelerate the SET towards a 100% RE based on Aruba. This thesis is structured in three parts: 1) a literature review to assess the main relevant theories. 2) A conceptual framework combining the Strategic Niche Management and the Multi-level Perspective is developed to analyse and compare case studies of RE technologies (Solar PV Rooftops, Electric Vehicle and Wind Turbines), including the external factors enabling or constraining this SET. 3) Finally, a roadmap is provided to accelerate the SET on the island of Aruba. Data collection is through literature review, desk research and semi-structured interviews with stakeholders in the actors’ group (government, market and society).

The main research question: What is constraining the SET on the island of Aruba, and how can this be accelerated?
To accelerate the SET: at the regime level, the government should introduce an independent entity and an energy policy where the network-related is aligned to support the targets and expectations. At the niche level, utility managers should implement energy storage and intelligent infrastructure to reduce the dependency on fossil fuels and enable demand-side management to create more room for RE penetration. At the landscape level, raising awareness, organise town hall meetings with pilot projects and demonstrations is necessary for society. Due to the limited space and land on the island, environmental impact assessments are required to mitigate the impact during the development process and avoid social resistance.
The education system should be upgraded to create new experiences, knowledge and information for local society. Hence, introducing a technical university is required but generally to change the teaching practice locally. The government’s responsibility is to stimulate more research, create more RE demonstrations, and create funds.
The research conducted by the universities, local and international, could ultimately improve regulatory measures. Utility and RE companies’ managers should consider that new business models will be necessary to survive in the new RE business environment. Other RET should also be explored, primarily because the current RET outcomes are unknown. The SET can be accelerated towards a 100% RE-based island by adopting these measures.

Date
2022
Data type
Research report
Theme
Research and monitoring
Report number
Masters Thesis
Geographic location
Aruba
Author

The terrestrial consequences of poor wastewater management in Curaçao

Abstract

 

Curaçao is a Small Island Development State in the Wider Caribbean Region. In the scope of sustainable development and the UN SDGs, these states are characterized by being extra vulnerable to environmental changes induced by climate change. One important way of adapting and mitigating is the sustainable management of natural resources such as water. Poor management of water and wastewater in particular is leading to social and environmental problems in Curaçao such as harming economical activities like fisheries and marine ecosystems. Nevertheless, social and environmental consequences of this poor management on land is hardly investigated. Therefore, this research was set up to explore the consequences on land through three approaches. First, by sorting out the current situation of wastewater monitoring in Curaçao on the managerial level by partaking in a government agency as a participant observer. Second, by exploring the occurrence of wastewater related diseases among the people of Curaçao. Third, by attempting to draw conclusions about ground water quality and its probable suitability for irrigation, by locating likely sources of wastewater pollution on the estimation of groundwater quality in Excel with secondary data of electrical conductivity. The findings include that wastewater management should be treated with more priority and that more efforts should be paid on consistency in responsibilities and storage of data. As to public health risks, the applied method did not find wastewater related diseases. Still, more thorough research on the matter is recommended. Lastly, overall groundwater quality in Curaçao is not directly suitable for irrigation. The water quality analysis with electrical conductivity provided a location to start further research where wastewater contamination might be occurring, but requires more methods to confirm whether this is actually applicable.

Date
2021
Data type
Research report
Theme
Research and monitoring
Geographic location
Curacao
Author

The blue economy and well-being in a small island destination

Introduction

This study aims to examine the Blue Economic Paradigm (BEP) application to a small island destination. Oceans are increasingly critical in linking countries through trade and as a source of directly providing and supporting the livelihood of many countries around the globe. Small islands are in desperate need of economic and social sustainability, striving to overcome scale constraints and propel economic development and diversity (Croes, Ridderstaat, and Van Niekerk, 2018). BEP is a developmental approach that could assist small island destinations to achieve their developmental goal of sustainability. A blue destination is the organization of human development and ecological health. The United Nations references the need to combine human development and ecological health in its Sustainable Development Goal (SDG) 14. SDG 14 of the United Nations encourages the responsible use of the ocean resources intertwined with eco-friendly "green codes." Beyond the United Nations reference to BEP there is paucity in the tourism literature as only a handful of studies have applied the BEP (Phelan, Ruhanen and Mair, 2020). In addition, tourism literature reveals that the BEP approach has experienced limited success in practice (Dwyer, 2018; Leposa, 2020). This study's main contribution is to explore the complexity of BEP as applied to resident’s well-being in a small island destination.

Date
2021
Data type
Research report
Theme
Education and outreach
Research and monitoring