Seagrass

Bioirrigation effects of Upogebia affinis within sargassum-impacted T. testudinum seagrass habitat

Summary
Thalassia testudinum seagrass is defined as important foundation species by serving as nursery area, giving coastal protection, maintaining high water qualities and their function as carbon sink. In the east Caribbean Sea, T.testudinum beds are under threat caused by the decomposition of excessive amounts of holo-pelagic sargassum blooms (Sargassum natans and Sargassum fluitans), creating anoxic conditions and causing the production of hydrogen sulfide( H2S) in the porewater. Hence, sulfide intrusion and toxicity can occur in T.testudinum causing lower plant performances and big scale seagrass mortalities. Positive effects of bioturbation were thought to relieve sulfide stress from T.testudinum by modifying the geo-chemistry by a process called ‘bio-irrigation’. This research assessed the effects of Bio-irrigating Upogebia shrimps on the porewater sulfide and sulfide plant intrusion within T.testudinum habitat. Firstly, a monitoring study was carried out to determined the effects of habitat and sargassum decomposition on Upogebia hole densities(indicator for Upogebia densities). Secondly, an Upogebia hole manipulation experiment was setup to investigate the effect of adding and removing bio-irrigating shrimps(Upogebia affinis) on porewater sulfide and sulfide intrusion within T.testudinum seagrass. In addition to the experimental effects, the overall effects of Upogebia hole densities on porewater sulfide and sulfide intrusion taken over the whole experimental period were investigated to account for possible delayed effects on sulfide intrusion within T.testudinum. Our results showed highest Upogebia hole densities in bare habitat with lower sargassum decomposition. Besides the possible negative effects of T.testudinum habitat reducing burrowing space for Upogebia, the bare habitat mainly consisted of Halimeda calcified sediment which likely facilitated the Upogebia burrow construction. Within the overall effects, Upogebia hole density showed negative effects on both porewater sulfide and total sulfur within T.testudinum leaf suggesting some possible bio-irrigation. Within the treatment effects, the removal intervention caused higher TS and lower δ34S in the T.testudinum leaf, but this was just visible after 16 days, indicating delayed effects of the removal intervention. Future mesocosm experiments are recommended to account for side effects and for more accurate sulfide measurements. This will fill more scientific knowledge gaps on the role of Upogebia shrimps as potential sulfide stress relievers for T.testudinum seagrass.

Date
2023
Data type
Research report
Theme
Research and monitoring
Geographic location
Bonaire

How does ecosystem functioning change now sea turtles are returning?

Dutch below

 

Sea turtles have been overharvested in the past, resulting in their endangered population status. But since two decades, their populations have recovered in certain areas around the world, and their ecological role is unfolding. The seagrass meadows they feed on are returning to their naturally grazed state as a result. Some are even becoming overgrazed. How does the return of the sea turtle affect the functioning of coastal ecosystems?

A research team analysed the seagrass ecosystem value (such as coastal protection and carbon storage) along a turtle grazing area from low to high. In experiments, they determined the impact of recovering sea turtle populations on ecosystem functioning. The team, led by Wageningen University, with colleagues from the Netherlands and the Dutch Caribbean, recently published their findings in Global Change Biology.

Seagrass meadows provide us with a range of goods and services. For example, they provide a habitat and food for many commercially important fish species. They also help protect the coast by stabilising sediment, and reducing wave energy. With the return of the large herbivore – the sea turtle – it is important to quantify their impact on the ecosystem services a seagrass meadow can provide. Often these services are measured separately, but in the new study, the most essential services have been assessed together to assess the ecosystem’s multifunctionality.

Combining ecosystem services in one index

“Our approach to measuring different ecosystem functions simultaneously and combining these in one ecosystem-multifunctionality-index is new for marine habitats and led to striking results,” says Marjolijn Christianen, lead investigator of the study. “We found that medium turtle grazing pressure increased carbon storage and nutrient cycling in seagrass meadows. On the other hand, fish biomass and other services were higher in meadows without turtle grazing. More importantly, we found a simultaneous collapse of all these services under severe turtle grazing pressure.”

Cages were used to keep turtles from grazing the seagrass to mimic the – no-grazing scenario

 

Integrative approach for balanced ecosystems

Based on these results, the authors argue that the successful return of the sea turtle should be accompanied by the protection of their habitat, seagrass meadows, as well as their predators, who can influence turtle grazing behaviour through fear effects. “Based on recent insights from studies in the Bahamas, the resulting spatial variation in grazing pressure can probably prevent habitat collapse,” says Fee Smulders, co-author of the study. Christianen: “By taking an integrative ecosystem approach to management, we can maintain high ecosystem multifunctionality, as well as balanced ecosystems that can sustain natural densities of charismatic sea turtles”.

Pristine seagrass meadows

Green sea turtles are considered the megaherbivores of the ocean. Since their populations have been decimated, scientists have become accustomed  to studying and experiencing ungrazed seagrass meadows. These lush seagrass meadows dominated by sturdy species are considered healthy, in ‘pristine’ condition, and very valuable. But with the return of the green sea turtle in many coastal areas in the past decades – due to successful conservation – many seagrass meadows have been transformed into grazed seascapes.

An earlier paper published in Nature, Ecology and Evolution by Wageningen researchers discussed how we must reconsider our view of a pristine seagrass meadow, which likely consists of a mosaic of (heavily) grazed patches and ungrazed patches with high plant species diversity and higher biodiversity in general. This mosaic seascape may be more natural, even though the ecosystem value may be slightly lower than ungrazed meadows. Now that the different grazing scenarios (high turtle abundance, low abundance, sometimes hyper-abundant) coincide in all three ocean basins where turtles are found, the outcomes of these new studies are even more globally relevant and urgent. The findings can also be used to predict ecosystem impacts of future shifts.

Three scenarios of megaherbivore grazing intensity can be observed in tropical seagrass ecosystems with green turtles as megaherbivores worldwide (Fig a). The turtle’s ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. In field experiments, researchers assessed the effects of simulated grazing intensity scenarios on ecosystem functions and multifunctionality (Fig b) in a tropical Caribbean seagrass ecosystem over an 18-month period.

More info in the Dutch Caribbean Biodiversity Database

 

 

 

 

De zeeschildpad komt terug, wat betekent dat voor het functioneren van ecosystemen?

In het verleden is er veel op zeeschildpadden gejaagd, waardoor ze met uitsterven worden bedreigd. Maar sinds twee decennia hebben ze zich in een aantal gebieden over de hele wereld hersteld. Hun rol in het ecosysteem komt daarmee terug. Zo wordt zeegras – hun voedingsbron – weer op een natuurlijke manier begraasd. Op sommige plekken wordt zeegras zelfs overbegraasd. Wat betekent de terugkeer van de zeeschildpad voor het functioneren van ecosystemen langs de kust?

Een onderzoeksteam heeft in een gebied met grazende zeeschildpadden de waarde van zeegras-ecosystemen geanalyseerd (waarbij bijvoorbeeld naar kustbescherming en koolstofopslag werd gekeken). Via experimenten bepaalden ze het effect van de zich herstellende populaties schildpadden op het functioneren van het ecosysteem. Het team, onder leiding van de Wageningen University, met collega’s uit Nederland en het Caribisch gebied, publiceerde hun bevindingen onlangs in Global Change Biology.

Velden met zeegras voorzien ons van verschillende diensten. Ze vormen bijvoorbeeld een habitat voor veel vissoorten die commercieel belangrijk zijn, en bieden hen voedsel. Ook helpt zeegras de kust te beschermen, doordat het sediment stabiliseert en golfslag vermindert. Nu de grote grazer – de zeeschildpad – is teruggekeerd, is het belangrijk om te bepalen wat voor impact dat heeft op de diensten die een zeegras-ecosysteem kan leveren. Vaak worden deze diensten afzonderlijk gemeten, maar in de nieuwe studie zijn de belangrijkste diensten samen onderzocht om de multifunctionaliteit van het ecosysteem te beoordelen.

Combinatie van ecosysteemdiensten in één index

“Onze aanpak om verschillende functies tegelijkertijd te meten, en die te combineren in één multifunctionaliteitsindex voor ecosystemen, is nieuw voor mariene habitats,” zegt Marjolijn Christianen, hoofdonderzoeker van de studie. “Het leidde tot opvallende resultaten. We zagen dat koolstofopslag en nutriëntencyclus hoger lagen in velden zeegras met een gemiddelde graasdruk. Anderzijds bleken de hoeveelheid vis, en andere diensten, hoger te zijn in onbegraasde velden. Maar nog belangrijker: we zagen dat al deze diensten bezweken bij een zware graasdruk.”

Om het scenario ‘geen-begrazing’ na te bootsen, werden er kooien gebruikt om te voorkomen dat schildpadden bij het zeegras konden.

Integrale aanpak voor een evenwichtig ecosysteem

Op basis van de resultaten stellen de auteurs dat de succesvolle terugkeer van de zeeschildpad moet samengaan met de bescherming van hun habitat (zeegras) en hun natuurlijke vijanden. Deze predatoren kunnen het graasgedrag van schildpadden beïnvloeden door het effect van angst. “Recent zijn er daar op de Bahama’s studies naar gedaan. Op basis van die inzichten, denken we dat ruimtelijke variatie in graasdruk die daaruit ontstaat, waarschijnlijk kan voorkomen dat habitats bezwijken,” aldus Fee Smulders, co-auteur van de studie. Christianen: “Met een integrale benadering van ecoysteembeheer kunnen we de hoge multifunctionaliteit van ecosystemen behouden. En het leidt tot evenwichtige ecosystemen, die natuurlijke aantallen van de zeeschildpad kunnen dragen.”

Ongerepte velden met zeegras

Groene zeeschildpadden worden beschouwd als de grote herbivoren van de oceaan. Sinds hun populaties zijn uitgedund, zijn wetenschappers gewend geraakt aan het bestuderen van onbegraasd zeegras. Deze weelderige velden – gedomineerd door sterke soorten – worden beschouwd als gezond, in ‘ongerepte’ staat, en als zeer waardevol. Maar dankzij succesvolle natuurbescherming is de groene zeeschildpad de afgelopen decennia in veel kustgebieden teruggekeerd. De velden met zeegras zijn daardoor weer veranderd in begraasde gebieden.

Een eerder artikel, gepubliceerd in Nature, Ecology and Evolution door Wageningse onderzoekers, beschreef hoe we ons idee van ‘ongerept’ zeegras moeten bijstellen. Waarschijnlijk bestaat dat uit een mozaïek van (zwaar) begraasde plekken, afgewisseld door onbegraasde plekken met een hogere dichtheid aan plantensoorten, en een hogere biodiversiteit in het algemeen. Dit mozaïek is wellicht natuurlijker, ook al ligt de ecosysteemwaarde iets lager dan bij onbegraasd zeegras. De uitkomsten van deze studies worden wereldwijd nog relevanter en urgenter, nu de verschillende graasniveaus (veel schildpadden, weinig, of soms uitermate veel) samenvallen in de drie oceaanbekkens waar schildpadden voorkomen. De bevindingen kunnen ook worden gebruikt om de gevolgen voor ecosystemen te voorspellen, die toekomtige verschuivingen kunnen veroorzaken.

In tropische ecosystemen met zeegras, waar groene schildpadden als mega-herbivoor voorkomen, worden wereldwijd drie niveau’s aan graasintensiteit waargenomen (a). Na eeuwenlange achteruitgang ontvouwt de ecologische rol van de schildpad zich snel in talrijke foerageergebieden waar populaties zich door natuurbescherming herstellen. Hier wordt een toename van het aantal overbegrazingen geregistreerd. Onderzoekers hebben met veldexperimenten de effecten beoordeeld van gesimuleerde graasintensiteit (op verschillende niveaus) op de functies van ecosysteemfuncties, en op multifunctionaliteit (b). Deze experimenten vonden gedurende 18 maanden plaats in een tropisch zeegras-ecosysteem in het Caribisch gebied.

 

 

More info in the Dutch Caribbean Biodiversity Database

 

 

 

Published in BioNews 59

Date
2022
Data type
Media
Theme
Research and monitoring
Geographic location
Bonaire

Superior biological traits of invaded (Caribbean) versus native (Red Sea) populations of the seagrass Halophila stipulacea

Abstract

The seagrass Halophila stipulacea is native to the Red Sea. It invaded the Mediterranean over the past century and most of the Caribbean over the last two decades. Understanding the main drivers behind the successful invasiveness of H. stipulacea has become crucial. We performed a comprehensive study including field measurements, a mesocosm experiment, and a literature review to identify ‘superior traits’ that can potentially explain the success story of H. stipulacea. We assessed meadow characteristics and plant traits of three invasive H. stipulacea populations growing off the Island of Sint Eustatius (eastern Caribbean). We compared similar parameters between native (Eilat, Red Sea) and invasive H. stipulacea plants in a common-garden mesocosm. Lastly, we also compared our field measurements with published data. The newly arrived H. stipulacea plants from St. Eustatius were characterized by higher percent cover, higher below- and above-ground biomasses, more apical shoots, and faster leaf turnover rates than those measured in both native and older invaded habitats. These results were further confirmed by mesocosm experiments where the invasive H. stipulacea plants grew faster and developed more apical shoots than the native plants. Results suggest that increased growth vigour is one of the main invasive traits that characterize successful invasive H. stipulacea populations in the Caribbean and potentially in other invaded areas. We encourage long-term monitoring of H. stipulacea in both native and invaded habitats to better understand the future spread of this species and its impacts on communities and their ecosystem functions and services.

Date
2022
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
St. Eustatius

The Pros and Cons of non-native Seagrass Explosive Expansion

A new study from the Caribbean Netherlands Science Institute and Utrecht University investigated the sediment stabilizing ability of non-native seagrass species Halophila stipulacea, found off the coast of St. Eustatius.  This new fast-growing seagrass has rapidly outpaced native species, leaving many to wonder if its explosive growth will be to the benefit or detriment to the island.

Halophila stipulacea growing into a sand patch. Photo credit: Francine M. van Hee

From anchoring sediments to creating fields of foraging and nursery areas, seagrass meadows play an important role in near shore environments.  Alarmingly, research from St. Eustatius has revealed that the seagrass meadows which once encompassed the entire island are now limited to a small area along the northern shelf. Furthermore, where native species such as turtle grass (Thalassia testudinum) and manatee grass (Syringodium filiforme) have disappeared the non-native species Halophila stipulacea has rapidly spread.

A new study conducted by the Caribbean Netherlands Science Institute and Utrecht University worked to explore the impacts of this population shift.  Namely, the study hoped to determine if this new species could stabilize sediments and help prevent coastal erosion as effectively as native species historically found in this area.

Sand Stability

After 14 weeks, researchers found that sediment within the H. stipulacea meadow had eroded, but this was mostly within the surface sediment layer.  The subsurface layer, however, was believed to be more stable due to the root and rhizome system of the seagrass and saw overall smaller variances when compared to bare sand areas, even during more extreme weather conditions.  Overall, there was less resuspension of sediment in non-native seagrass patches and more long-term sediment level stability when compared to open sand areas.

Habitat Forming

Seagrass meadow with sponge at Double Wreck. Photo credit: Francine M. van Hee

In addition to stabilizing sediments, this new habitat was found to support diverse invertebrate and fish populations.  More specifically, H. stipulacea seems to be popular among filter feeders such as sponges and bivalves, which then in-turn lures in predatory fish, improving overall biodiversity within the area.  Furthermore, since seagrass tends to grow adjacent to coral reefs, algae eating fish which are attracted to the seagrass then work to clean the neighboring corals. Finally, limited resuspension of the sediment coupled with the high update rates of nutrients by seagrass also means clearer waters for the neighboring corals

Implications

Although perhaps not as efficient as native seagrasses, the non-native seagrass H. stipulacea does appear to have some advantages.  Its fast-growing nature means that it can recover more rapidly after extreme storm events than native species. Its rapid expansion could help counter the massive seagrass losses seen around the island, contributing to more sand stability and improved habitat for a wide variety of marine life.

To learn more, the full report can be found on the Dutch Caribbean Biodiversity Database using the link below.

More info in the Dutch Caribbean Biodiversity Database

 

 

Published in BioNews 58.

 

Date
2022
Data type
Media
Theme
Research and monitoring
Geographic location
St. Eustatius
Author

Range expansion of Marinomyxa marina, a phytomyxid parasite of the invasive seagrass Halophila stipulacea, to the Caribbean

Abstract

Halophila stipulacea, a small seagrass species native to the Indo-Pacific, is a Lessepsian migrant and a high-profile invader that has successfully colonized two exotic regions, the Mediterranean (first observed in 1894) and the Caribbean (2002). In 1961, an intracellular phytomyxid parasite, Marinomyxa marina (SAR: Rhizaria: Endomyxa: Phytomyxea) was discovered in the petioles of H. stipulacea in the Red Sea, and three decades later, it was reported off the coast of Sicily (Mediterranean), suggesting parallel migration of the two organisms. In 2018, infected petioles of H. stipulacea were also observed in St. Eustatius (Caribbean), but the identity of the causative agent remained unresolved. Here, we provide information on four new localities of phytomyxid-infested populations of H. stipulacea in Greece (Mediterranean), and Bonaire and Martinique (Caribbean), including notes on infection prevalence and seasonal dynamics. Using the 18S rRNA barcoding gene, we bring molecular evidence that the disease is caused by a genetically uniform variant of M. marina at all the examined sites. We conclude that the parasite is now widespread throughout both invaded regions and has been present in the Caribbean since 2013 at the latest. For the first time, the production of fruits in infected plants is observed, indicating a non-lethal nature of the symbiosis. While the arrival of M. marina to the Caribbean is unlikely to alleviate the current invasiveness of H. stipulacea, we emphasize the need for its further monitoring since the host-specificity and general biology of seagrass-associated phytomyxids are still poorly understood.

 

 

View full text https://www.sciencedirect.com/science/article/abs/pii/S0304377022000663

Date
2022
Data type
Scientific article
Journal
Geographic location
Bonaire

Protecting Fish Proven Key in Slowing Down Invasive Seagrass

New research from Wageningen University, University of Amsterdam and Florida International University highlighted the role herbivorous fish species plays in staving off nonnative seagrass invasions.  A healthy and diverse fish population can provide top-down control by grazing on invasive seagrass species, minimizing its overall invasion.

Invasive species can pose a direct threat to native species through competition and hybridization. Species which evolved to reproduce and spread rapidly generally have a greater chance at survival, and when introduced to a new environment, can out compete slower growing native species. This is certainly the case for Halophila stipulacea, a seagrass native to the Red Sea, Persian Gulf and Indian Ocean which has been rapidly gaining habitat within the Caribbean since its first reported sighting in 2002. This species is quickly outpacing native Thalassia testudinum (turtle grass) and Syringodium filiforme (manatee grass), both of which provide critical habitat, coastal protection and foraging grounds. 

 

Mixed area of Halophila stipulacea (shorter blades) and Thalassia testudinum (longer blades). Photo Credit: Fee Smulders

The Study

A new study by Wageningen University and Research, the University of Amsterdam and Florida International University worked to improve overall understanding of the controlling factors in the spread of invasive seagrasses.  Researchers investigated the influences of local nutrient enrichment (nitrogen and phosphorus) as well as the impact of large herbivorous fish on the growth and expansion rates of Halophila stipulacea. The study took place between 2018 and 2019 within two seagrass meadows, Lac Bay on Bonaire and Barcadera on Aruba.

Seagrass Meadow. Photo Credit: Fee Smulders

The Results

At both sites, nutrients were added to selected seagrass plots by using slow-release fertilizer. Interestingly, only on Bonaire did these excess nutrients actually result in a reduction of H. stipulacea’s expansion into the turtle grass meadows, while native seagrass was unaffected.  This is believed to be because on Bonaire, herbivore fish abundance is 7 times greater and diversity is 4.5 times higher than on Aruba, therefore excess nutrients likely enticed more fish to graze therefore limiting the spread of the invasive seagrass.  Native seagrass is more adapted to high grazing pressures, during this study grazing pressure increased after nutrient enrichment but only the invasive species showed lower expansion rates.  In fact, the exclusion of large herbivorous fish (like parrotfish) doubled the invasive expansion rates within sandy patches on Bonaire, further strengthening this theory.

Top-Down Approach

This study highlights the importance of holistic approaches to ecosystem management.  Healthy and diverse fish communities can provide top-down control to invasive species expansion Increasing grazing pressures can help reduce the competitive advantage of fast-growing species, slowing down invasion of non-native species. The key to seagrass restoration and conservation could lie in protecting the biodiversity of these fragile areas.

To learn more, please find the full report on the Dutch Caribbean Biodiversity Database using the button below.

https://www.dcbd.nl/document/fish-grazing-enhanced-nutrient-enrichment-m...

 

Article published in BioNews 49

Date
2021
Data type
Media
Theme
Education and outreach
Research and monitoring
Geographic location
Aruba
Bonaire
Author

New field guide on invasive seagrass flowers

Seagrasses are marine flowering plants that can reproduce both sexually (through flowering and subsequent seed formation) and asexually (through clonal growth). Sexual reproduction increases genetic diversity, resilience and dispersal success of seagrasses. A recent study discovered that the first report of sexual reproduction of a successful invasive seagrass was incorrect, and therefore released a new field guide to improve future determination.

Photo credit: Henkjan Kievit

The invasive seagrass Halophila stipulacea originating from the Red Sea and Western Indo-Pacific, has been successfully invading the Mediterranean Sea since 1894 and the Caribbean Sea since 2002. It was shown to outcompete native seagrass species and affect local ecosystem functioning.

In this new paper, WUR PhD candidate Fee Smulders found that so far, only male flowers have been described of the successful invasive seagrass species H. stipulacea in the Caribbean Sea. Female flowers and fruits have not been reported. This means that fragmentation and fast clonal growth may be the only factors explaining its current success, without genetic adaptation capacity. This needs to be taken into account in further studies studying H. stipulacea expansion.

In-depth monitoring of reproductive structures in invaded seagrass meadows, both in the Mediterranean and the Caribbean Sea is important to assess further invasion potential.

Because the fruits and flowers of  H. stipulacea have been misidentified in the past, we have developed a field guide with a dichotomous key, to take into the field and easily identify the various structures by eye. We call upon (citizen) scientists to keep an eye out underwater when they are in the Caribbean, to be able to predict future invasion success of this species.

– Fee Smulders

The field guide can be found in the supplementary material of the paper, and reports can be made in the online global database www.seagrassspotter.org.

Or check the field guide directly in the DCBD:

https://www.dcbd.nl/sites/default/files/documents/FIeldguide_Hstipulacea...

 

 

Article published in BioNews 44

 

Date
2021
Data type
Media
Theme
Education and outreach
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten
Author

Seagrasses and coastal protection: The role of Halophila stipulacea in sediment stability at the coast of St. Eustatius, Dutch Caribbean

Abstract

Seagrasses are increasingly being recognized for their potential in protecting the coastlines from flooding and erosion. As ecosystem engineers, seagrasses can attenuate waves as well as trap and stabilise sediment, causing the seabed to become more stable, which can contribute to coastal protection. Where many tropical countries lack the means to undertake traditional coastal protection measures, natural ecosystems, such as seagrass meadows, can provide cost-effective alternatives to protect coastal communities from natural hazards and improve their well-being, as ecosystem services are continuously provided. The Caribbean regions holds a large cover in seagrass relative to the coastlines, yet few studies have focused specifically on seagrass and sediment stability in this region. Over the last decades, native seagrass meadows have been degrading and the non-native Halophila stipulacea, originating from the Red Sea, has been spreading rapidly through the region relatively recently. A knowledge gap exists in whether this opportunistic species could provide essential ecosystem services, such as coastal protection, where native species have been lost. The extent to which seagrass species contribute to coastal protection services depends on the growth properties of these species as well as the environmental conditions. Therefore, a need remains to study sediment dynamics in seagrass meadows in different scenarios. The present study aims to increase the understanding of the role of H. stipulacea in sediment dynamics, specifying on the coast St. Eustatius, Dutch Caribbean.

First, current available knowledge on sediment stabilising properties of seagrass species in the wider Caribbean region was reviewed. Second, an experiment was set up at a study site with a depth of 18 m, in a monospecific H. stipulacea meadow, and in a sand patch within the meadow. In addition to measuring the growth properties of H. stipulacea, sediment stability was investigated by measuring changes in seabed level over time, as well as using sediment traps to calculate the sediment deposition rate. Data on meteorological conditions was retrieved to investigate correlations between the weather and sediment change.

Results showed that H. stipulacea at a depth of 18 m at the coast of St. Eustatius, grew a new shoot within 3.3 days, over twice as fast as measured for its native range. Average leaf length was 4 cm while eight shoots were observed per strand. Similar values were observed in its native range. Although the leaf length was smaller than most native seagrasses in the Caribbean, H. stipulacea showed a higher density, which likely contributed to the findings of this study. The sediment deposition rate was much lower in the H. stipulacea meadow than in the sand patch, which is probably the result of limited resuspension within the seagrass meadow. After 14 weeks, the sediment in the H. stipulacea meadow had eroded. This is believed to be the result of erosion of the surface sediment layer, a less stabilised layer of sediment that was potentially resuspended and carried away when the weather became more turbulent after months of calm conditions. The subsurface layer, however, is believed to be more stabilised by the root and rhizome system of H. stipulacea, which explains why smaller and relatively constant changes in sediment level were found after weather conditions had increased. The sediment level in the sand patch showed a larger variance over time, also varying much more spatially between erosion and accumulation.

This study showed that H. stipulacea seems to stabilise the subsurface sediment layer via its root and rhizome system, which is assumed to contribute to a more stable seabed. However, this result only became apparent after the erosion of the surface layer and might even disappear with more extreme weather conditions. This study urges for future research to investigate the sediment stabilising effect of H. stipulacea at shallower depths as well as over longer terms, as different results might be found for different seasons.

Date
2022
Data type
Research report
Theme
Research and monitoring
Report number
MSc Thesis
Geographic location
St. Eustatius

Fish grazing enhanced by nutrient enrichment may limit invasive seagrass expansion

The success of invasive macrophytes can depend on local nutrient availability and consumer pressure, which may interact. We therefore experimentally investigated the interacting effects of nutrient (nitrogen and phosphorus) addition, the exclusion of large herbivorous fishes and mimicked grazing on the expansion rates of the invasive seagrass Halophila stipulacea. The experiments were established on Bonaire and Aruba, two islands in the southern Caribbean, which differ in fish community structure. We observed that multiple Caribbean fish species feed on H. stipulacea. At both study sites, nutrient enrichment decreased invasive leaf carbon:nitrogen ratios. However only on Bonaire, where herbivore fish abundance was 7 times higher and diversity was 4.5 times higher, did nutrient enrichment result in a significant reduction of H. stipulacea expansion into native Thalassia testudinum meadows. This effect was likely due to increased herbivory on nutrient enriched seagrass leaves, as we found that excluding large herbivorous fish (e.g. parrotfish) doubled invasive expansion rates in bare patches on Bonaire. On Aruba, H. stipulacea expansion rates were higher overall, which coincided with lower abundances and diversity of native fishes, and were limited by mimicked fish grazing. We suggest that top-down control by the native fish community may counteract eutrophication effects by increased grazing pressure on nutrient-rich invasive seagrass leaves. We conclude that diverse and abundant herbivore communities likely play an important role in limiting invasion success and their conservation and restoration may serve as a tool to slow down seagrass invasions.

Date
2021
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Aruba
Bonaire