marine habitat

A comparison of fish communities of subtidal seagrass beds and sandy seabeds in 13 marine embayments of a Caribbean island, based on species, families, size distribution and functional groups

Differences in fish community structure between different estuaries, lagoons and bays can be very large, and generalisations are complicated by the use of a wide variety of sampling methods. In the present study, fish communities of subtidal seagrass beds and sandy seabeds in 13 marine embayments of a single Caribbean island were therefore sampled using a uniform method. The objective of the study was to determine whether the seagrass and sandy seabed habitats of various embayments are characterised by typical fish assemblages which differ in terms of taxa (species, families), size classes (life stages) and functional groups (ecological species groups, feeding time and diet). This was linked to the hypothesis that differences in fish assemblages between habitats in different embayments are larger at taxonomic levels than at the level of functional groups. A second objective was to determine the most useful discriminating features between the two habitat types. The above hypothesis was rejected, since differences in fish assemblages from different seagrass and sandy seabed sites did not increase from functional to taxonomic level, but from size class to diet/species to family/feeding time to ecological species group. However, the seagrass and sandy seabed habitats could each be characterised by typical fish assemblages which differed in taxonomical and functional group composition, irrespective of differences in environmental and biotic variables between the embayments in which these habitats were situated. The two habitat types could be best characterised on the basis of fish family, ecological species group, feeding time and size distribution. Seagrass beds mainly harboured nocturnally active nursery species (Haemulidae, Lutjanidae, etc.), whose relative abundance was related to vegetation (mainly seagrass) cover. Sandy seabeds mainly harboured diurnally active bay species (Gerreidae, etc.) whose relative abundance was related to cover of bare sand. Similarities in taxonomical and functional traits of fish species predicted whether they occurred more abundantly in seagrass beds or in sandy seabeds.

Date
2003
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Distinct Microbiomes in three Tropical seagrasses around the island of Curaçao: Halophila stipulacea, Halodule wrightii and Thalassia testudinum

Seagrasses represent the unique re-colonization of the marine ecosystem by angiosperms. As their terrestrial relatives, seagrasses are important habitat providers but in contrast, their microbiomes are still poorly known. The microbial community associated with terrestrial plants is intensively studied and plays an important role in plant fitness. The close relation of seagrasses to terrestrial plants suggests a resemblance in survival strategies, including the creation of a microbiome distinct of the surrounding environment. To obtain more knowledge regarding seagrass microbiomes and their intra- and interspecies differentiation, samples of three tropical seagrass species occurring around the island of Curaçao, the invasive Halophila stipulacea and the natives Halodule wrightii and Thalassia testudinum, were collected. Root and leaf-associated microbes were separately analyzed using high throughput Illumina sequencing of the region V5-V7 of the 16S rRNA gene. Sequences were aligned and clustered into Operational Taxonomic Units (OTUs). Results displayed the occurrence of a seagrass-specific microbiome, distinct from that of the surrounding seawater and sediment. The existence of a species and tissue (root/leaf) specific bacterial community and structure was detected, along with a bacterial community that was shared among the seagrasses. OTUs belonging to the shared seagrass community were mostly of the orders rhizobiales. Desulfobacterales was the most abundant order associated with the roots and Rhodobacterales with the leaves of the three seagrass species. Species-specific bacteria are represented mostly by OTUs of the same orders as the common OTUs, along with a few species-specific orders. The high abundant and widespread bacterial OTUs were identified to be mostly associated with sulfur and nitrogen cycling, which point towards the importance of these processes in seagrass fitness.

Date
2018
Data type
Research report
Theme
Research and monitoring
Report number
Student Thesis
Geographic location
Curacao
Author

A quantitative study of the seagrass and algal meadows of the Spaanse Water, Curaçao, the Netherlands Antilles

The Spaanse Water is a relatively turbid, 3.19 km2 inland bay of virtually oceanic salinities and contains the largest seagrass, algal and mangrove areas of the Curaçao Underwater Park. During 1989 and 1990, a quantitative community assessment of the larger attached flora and fauna of the seagrass and algal meadows of the bay was conducted at 151 6 m2 stations using a quadrat sampling technique.

A total of 13 different assemblages were distinguished. Shallow assemblages were dominated by Thalassia testudinum and Halimeda opuntia. As depth increased and light levels decreased, Thalassia gave way to increased coverages of especially H. opuntia, H. incrassata, Cladophora sp. and Caulerpa verticillata. In areas with significant availability of hard substrate an assemblage characterised (though not dominated) by corals was found at depths of 0–2 m, while sponges were concentrated at depths of about 4 m. The richest assemblages were found in shallow areas with high light levels and where a mix of both hard and soft substrate occurred. Assemblages with the lowest species richness were typically associated with low light intensities, soupy muds or homogeneous sandy sediments of high grain size.

Date
1996
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Accelerating loss of seagrasses across the globe threatens coastal ecosystems

Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, includ- ing an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, mana- tee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assess- ment of seagrass loss until now. Our comprehensive global assess- ment of 215 studies found that seagrasses have been disappearing at a rate of 110 km2 yr 1 since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr 1 before 1940 to 7% yr 1 since 1990. Seagrass loss rates are comparable to those reported for man- groves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth. 

Date
2008
Data type
Scientific article
Theme
Research and monitoring