fishery

Response of reef fish populations to changes in coral cover, fishery and disruptive events in Bonaire Marine Park

Management of reef fish populations requires insight in their resilience to anthropogenic stressors. Studies on temporal variations in reef fish populations and their abundance responses to environmental changes are crucial to the development of ecosystem-based management.

Seventeen years of voluntary fish survey data of reef fish at the west coast of Bonaire Marine Park (Caribbean) were analysed to investigate the effect of environmental changes on local reef fish populations. Various anthropogenic stressors that influence the coral reefs of Bonaire were studied in recent years, this study focusses on population responses to loss of coral cover, the establishment of a fishery protected area, and reef fishery pressure. In addition, reef fish responses to specific events were analysed at species or family level.

In general fluctuations in sighting frequencies were species-specific and difficult to interpret. Three large parrotfish decreased by approximately 50% over time and there were indications of a negative trend in mid-sized parrotfish as well. In fishery targets, the most intensive fished group (large to mid-sized grouper species), decreased strongly. After their abundance decreased to near zero, two species belonging to other fish families showed signs of sequential overfishing. It is unclear if larval import will compensate for the loss in reproductive capacity of the species in decline, recent literature on recruitment distances suggest that the level of self recruitment is high in Bonaire. An exception to short recruitment distances was noted earlier in the balloon fish Diodon holocanthus. The data suggest that the balloon fish population till 2010 originated from the mass recruitment in 1994, from the start of the studied period in 2000 to 2010 their abundance steadily declined to near zero. Another event with direct effect on population dynamics is the mass mortality events in moray eels in 2008. With a lag time of a year, especially two Enchelycore species strongly declined afterwards, which could elucidate the highly variable population densities of these species over the period. A following moray eel mass mortality event in 2022, also occurred at the onset of a period of sea water warming, paralleling various reef fish species in the Red Sea. Increase in warming events carries the risk of more frequent mass mortalities.

 

Date
2023
Data type
Research report
Theme
Research and monitoring
Geographic location
Bonaire

Fishery Trends for St. Eustatius

Wageningen Marine Research and Caribbean Netherlands Science Institute released an updated report on the fishery trends for St. Eustatius between 2012 and 2020.  This report used a series of surveys and logbooks entries to estimate total number of fishing trips, landings, species and length averages for locally caught fish and lobsters.

Most fishing on St. Eustatius takes place using small open boats.  In fact, although the fleet averages about 20 boats each year, less than five operate full time. Overall, total number of fishing trips peaked in 2015 and then proceeded to decrease each year reaching a minimum in 2019. There was a rebound in 2020 but it only reached about half of its peak from 2015.

Caribbean spiny lobster. Photo source: Marion Haarsma

Lobster

The main species targeted is the Caribbean Spiny Lobster (Panulirus argus) which is mainly caught using lobster traps and by free and scuba divers.  Over this time period, the St. Eustatius lobster fishery averaged between 16 and 48 tonnes caught annual, which although may seem small when compared to the total annual landing for the Caribbean (30,000 tonnes) is actually quite impressive considering the small size of the fishing area.  Overall, estimated annual landings of lobster matched the general fishing trends for the island, being highest in 2015 (47.5 tonnes) and relatively low in 2019 (9.5 tones).

When considering total lobsters caught per trip, it appears that there has been an overall increase in lobster abundance between 2012 and 2020. However, the size of lobsters harvested may be a reason for concern as 42% were under the legal size.

Landed fish. Photo source: Dolfi Debrot

Fish

Most of the reef fish landed were caught using fish traps (43%). The rest were caught using handlines (25%), free diving (21%), and scuba diving (10%).  Overall, trends showed highest number of fish caught between 2014-2016 and then a decrease between 2017-2020.  Similar decreases were also seen for both handline fisheries and trollers. These decreases in fish landings are most closely tied to a decrease in fishing efforts over this period.

A number of species are caught as bycatch in lobster traps ranging from blue tang, doctorfish, cowfish, red hind and squirrelfish.  Interestingly, general trends showed a significant decrease in bycatch from 2014 (9.9 tonnes) to 2020 (1.6 tonnes).

FADs

Recently, an unofficial Fish Attracting Device (FAD) fishery has been developed around the island, but data for this fishery is still not available. This fishery targets pelagic fish species that are very different than those caught in the traditional, reef-based fishery.  FAD fisheries can lead to a number of issues, such as severe overfishing and arguments between fishermen, so tracking the use and landings of these devices is vital.  While FADs can represent an interesting opportunity for local fishermen and to expand sustainable local food production, there is an urgent need for research and monitoring of this fishery to help guide it to become sustainable.

For more information, read the full report on the Dutch Caribbean Biodiversity Database using the button below.

 

https://www.dcbd.nl/sites/default/files/documents/update_on_the_trends_i...

 

Article published in BioNews 50

 

Date
2021
Data type
Media
Theme
Education and outreach
Research and monitoring
Tags
Geographic location
St. Eustatius
Author

Ontwikkelingsmogelijkheden voor de agrarische sector in Caribisch Nederland

De huidige voedselproductie op de eilanden Bonaire, Sint Eustatius en Saba is beperkt. Zowel de overheid als de lokale bevolking hebben de afgelopen jaren initiatieven genomen om de voedselproductie te verhogen. Deze studie trekt daar lering uit en komt met concrete aanbevelingen voor zowel het beleid als de sector (land- en tuinbouw, veeteelt en visserij). Centraal staan, voor elk van de drie eilanden, vier op te stellen plannen: een integraal zoetwaterplan, een agrarisch ontwikkelplan, een visserijontwikkelplan en een agrarisch onderwijsplan. Dit onderwijsplan moet leiden tot een grotere interesse voor lokale voedselproductie bij jongeren en dient zich te richten op kennis en vaardigheden ten behoeve van zowel duurzame innovatieve intensivering van productiesystemen als professionele voedselproductie in combinatie met nevenactiviteiten met betrekking tot toerisme of zorg.

Trefwoorden: Caribisch Nederland, duurzame voedselproductie, zoetwaterplan, agrarisch ontwikkelplan, visserijontwikkelplan, agrarisch onderwijsplan.

Date
2020
Data type
Research report
Theme
Governance
Report number
WPR-1026
Geographic location
Bonaire
Saba
St. Eustatius

Island of Curacao FAD programme

The use of FAD can improve the production of artisanal fishers, lowering fuel costs and reducing the time spent loitering at sea looking for fish. The FAD act as a habitat for juvile fishes which otherwise might have perished and probably have some positive influence on fish production. Nevertheless the enhancement role of FAD is of very limited importance. Basically FAD do not "fish" but only agrregate despersed fish making it easier to catch them. As with all fishing methods however there ate certain drawbacks. There are limitations where FAD can be placed. Conflicts can arise between fishers from competition for space around the FAD and in some area's FAD are known to attract large numbers of juvenile fish, thus creating a problem of over-harvesting a part of the population which has not yet reached its reproductive potential.

In Curacao FAD have been in use since 1993. During these years several somewhat different FAD have evolved. In this report you can read about Curacao's FAD programme.

Date
2001
Data type
Other resources
Theme
Research and monitoring
Document
Tags
Geographic location
Curacao
Author

National report of Aruba, Curaçao, Bonaire 1993–2004

The first FAD in the Netherlands Antilles was deployed on 9 March 1993 in Curaçao. In June, 2002 the programme was extended to Bonaire and in December, 2002 to Aruba. The Curaçao programme has been described in considerable technical detail in earlier publications: Buurt, G. van, 1995, 2000 and 2002. During the years, three basic designs of surface buoys have been tested.

Date
2007
Data type
Other resources
Theme
Research and monitoring
Tags
Geographic location
Aruba
Bonaire
Curacao
Author

Fishery value of coral reefs in Bonaire (policy brief)

Policy Briefs:

 

The Economics of Ecosystems and Biodiversity on Bonaire 

 

The Challenge
Fishing provides an important source of income and livelihood on the Caribbean Island of Bonaire, also many people sh for recreational purposes. A large part
of the catch is composed of reef-dependent species, which rely on the health
and productivity of local coral reefs. To assist decision-makers in understanding
and managing these fragile ecosystems contributing to Bonairean well being the economic value of reef-dependent sheries is determined. Furthermore, the spatial distribution of the economic value of the reef sheries is revealed to help decision makers understand which areas of reef are most economically important from
a sheries perspectives.

The Approach
By estimating the economic value of the reef sheries, which consists of both recreational and commercial shing, the total socio-economic value of reef shing
on Bonaire is estimated. Commercial shing is valued using the ‘net factor income approach’. The recreational value of the reef sheries is calculated using both the ‘choice modeling’ and the ‘market valuation’ method. The commercial and recreational values are combined to arrive at a total, annual reef- sheries value for the Island of Bonaire. This aggregate value is then combined with spatial sheries production data using ArcGIS to create a sheries value map of Bonaire. 

Data type
Other resources
Theme
Education and outreach
Geographic location
Bonaire

The fishery value of coral reefs in Bonaire

Fishing provides an important source of income and livelihood on the Caribbean Island of Bonaire, also many people fish for recreational purposes. A large part of the catch is composed of reef-dependent species, which rely on the health and productivity of local coral reefs. To assist decision-makers in understanding and managing these fragile ecosystems contributing to Bonairean well being the economic value of reef-dependent fisheries is determined. Furthermore, the spatial distribution of the economic value of the reef fisheries is revealed to help decision makers understand which areas of reef are most economically important from a fisheries perspectives.

By estimating the economic value of the reef fisheries, which consists of both recreational and commercial fishing, the total socio-economic value of reef fishing on Bonaire is estimated. Commercial fishing is valued using the ‘net factor income approach’. The recreational value of the reef fisheries is calculated using both the ‘choice modelling’ and the ‘market valuation’ method. The commercial and recreational values are combined to arrive at a total, annual reef-fisheries value for the Island of Bonaire. This aggregate value is then combined with spatial fisheries production data using ArcGIS to create a fisheries value map of Bonaire.

The reef-related total commercial fisheries are valued at almost $400,000 annually. The recreational fishery value is estimated at an economic value of almost $700,000 per annum. These calculations have been used to create an allocation function, which estimates the spatial distribution of the fisheries value along the coral reefs of Bonaire. This in turn can be used to support long-term decision-making for example regarding specific locations for coastal zone development and its impact on commercial and recreational fisheries. 

Date
2012
Data type
Research report
Theme
Education and outreach
Research and monitoring
Report number
R12-08
Geographic location
Bonaire

Status and trends Saba Bank fisheries: 2015

The Saba Bank is a 2200 km2 shallow bank area that lies fully within the Dutch Kingdom’s Caribbean exclusive economic zone (EEZ) waters. In recent years it has gained international recognition as an area of exceptional biodiversity value and been accorded increasingly higher and more extensive conservation status. For instance, in 2012 it was accorded “Particularly Sensitive Sea Area (PSSA)” status by the International Maritime Organization (IMO) which forbids tanker traffic and in 2015 it became part of the “Yarari Marine Mammal and Shark Sanctuary” emphasizing its value to both endangered cetaceans and sharks.

The nineteen seventies, eighties and early nineties saw extensive overfishing of the bank by foreign vessels with major depletion of its stocks of large groupers and conch. Once the exclusive fishing zone (EFZ) had been claimed in 1993 for the Netherlands Antilles fisheries regulation was enacted and the Coast Guard was established in 1995, foreign illegal, undocumented and unmanaged (IUU) fishing was quickly brought to an end. This allowed renewed local interest in fishing on the bank and has given the bank new ecological perspective.

Today the bank supports two important long-time fisheries operating from Saba. These are a directed fishery for the West-Indian spiny lobster (Panulirus argus) and a “redfish” fishery for deep-water snappers (redfish). Both fisheries are principally based on the use of traps. Pelagic fishing for wahoo and dolphin fish is currently almost negligible, representing only about 2% of total landings by weight. About 60% of the annual commercial effort (in terms of fishing trips) is directed towards the lobster and 40% towards redfish. The total value of the fishery ten years ago amounted to about US$ 1.3 million per year ex-vessel value (Toller & Lundvall, 2008), involved roughly 10 fishing boats and provided direct employment for about 30 persons. In the period 2012-2015 the total fishery landings grew from 78.4 tons to 135.2 tons and still involved 10 boats. This is a major contribution to the local economy of this small island to which by comparison the main economic pillar for future development (nature tourism) contributes US$ 7.6 million annually (Van de Kerkhof et al., 2014).

Recent sightings by fishermen and Saba Bank Management Unit (SBMU) of fishing activities by foreign fishing vessels without commercial or recreational fishing license, (even inside the seasonal closed area during the Red Hind spawning aggregation season) suggest that IUU may again on the rise due to the lack of regular Coast Guard patrols and enforcement.

We here assess the current status of these two main fisheries and report on the monitoring results as funded by the Netherlands Ministry of Economic Affairs and as collected by the SMBU hosted by the Saba Conservation Foundation (SCF ) in collaboration with Wageningen Marine Research (WMR) during the period spanning 2012-2015. In addition, we discuss issues such as reef fish and shark bycatch and the status of the Queen conch stocks of the bank (Lobatus gigas).

Lobster trap fishery: This fishery only began during the 1980s with the advent of tourism on St. Maarten. Lobsters are fished with lobster traps (principally traditional Caribbean arrowhead traps with a modified entrance) up to depths of 45 m. This means that about 84 % of the bank is potentially suitable for this fishery, but only a part of the bank is usually fished. The fishery is strongly seasonal. Highest catches were realized in the months August through January while the lowest catches were made April to July. Egg-bearing (berried) females can be found all year long but there seemed to be a peak in berried females February to May. Recent years (2012-2015) has seen the annual number of traps set from about 48 000 traps set/y to about 73 000/y. The average soak time is 11.6 days and almost all the catch was exported to St. Maarten. Total annual catches in 1999, 2007 and 2012 respectively were estimated to be 62 tons, 92 tons and 36.8 tons. Since 2012 annual catches have steadily increased to about 76.5 tons in 2015. The information and data collected over the 5 years covered by the present study indicate a 50% increase in the effort (in terms of trap drops) of the lobster fishery, with a corresponding doubling in the lobster landings. Standardized catch per unit effort (CPUE) development shows that lobster abundance dropped from higher levels in 2000 to lower levels in 2011, with a progressive increase towards the level of 2007 since then. The observed pattern of catches for the Saba Bank since 2000 appears to mirror regional catch patterns (which are driven by regional recruitment patterns) but not local fishing pressure on the bank.

The average size of landed lobsters appears to have fluctuated between 108 and 118 mm carapace length (CL) since 2000, with no signs of significant decrease in average lobster size landed (which might have suggested overfishing). In fact, the average size of lobsters landed remains consistently high compared to other fisheries of the region. Average size at landing (113 -117 mm) is larger than size at maturity (females = 88 mm; males = 92.2 mm). Additional good news is that the landing of sublegal lobsters (<95 mm CL) has steadily decreased from about 28% in 2012 to about 4% in 2015.

We conclude that overall, based on our current analysis, there appears to be no strong sign of overfishing. We recommend the development of a spiny lobster fishery management plan which defines harvest goals and enforcement strategies that are simple, robust and cost-effective. Options to consider would be limits to the number of fishing licences, the number of traps per fishermen/licence (currently about 300 per fisherman), a total limit to traps deployed in the fishery, registry and visible marking of all traps and trap sets. Effective marking of gear for identification can also help prevent gear loss, and gear theft. The use of escape slots and biodegradable panels is an easy way to help limit negative impacts of gear without major costs. Finally a total quota for the combined catch can serve to cap the total harvest.

It is highly recommended that the management of spiny lobster is aligned with the principles outlined in the lobster conservation and management declaration of the 17 island state Caribbean Regional Fisheries Mechanism (CRFM, Annex 5). The Netherlands could become a member of CRFM for full participation in this regional management mechanism.

Mixed reef fishes: The lobster fishery results in a certain degree of bycatch. Reef fish caught in lobster traps are in part landed for sale, for own consumption, or to serve as food for the spiny lobsters in their holding traps in the harbor. This bycatch is composed of a broad range of reef fish species. The three main reef fish species landed were the queen triggerfish, Balistes vetula, white grunt, Haemulon plumierii and the red hind, Epinephelus guttatus, representing upwards of 50% of the weight of landings. About 33% of the mixed reef fish (by weight) is discarded and mostly consists of nurse sharks, Ginglymostoma cirratum, honeycomb cowfish, Acanthostracion polygonius, cottonwick grunts, Haemulon melanurum and white grunt, H. plumieri. The catches of mixed reef fish have increased from 6.6t to 13.6t between 2012 and 2015, representing on average just under 20% of the overall total catch (all species combined) on Saba Bank. Overall, reef fish yields on Saba Bank appeared to be low compared to other areas. Based on the results from this study, a rough estimate of the yield is between 0.025 and 0.10 t/km2/year. These low yields can in part be due to the low reef fish densities on Saba Bank as estimated in fisheries-independent studies. Lower fish catchability of traps designed for lobsters likely also contributes to lower catches compared to studies using fish traps. The low fish density is unlikely to be caused by current overexploitation but to one or a combination of factors such as a naturally lower biomass of reef fish and losses of habitat for reef fishes due to bleaching-induced coral mortalities.

Redfish fishery: The “redfish” fishery is also largely conducted using traps. These are typically deployed at depths of between 50 en 250 m and catch mainly silk snapper, Lutjanus vivanus (69% by weight), blackfin snapper Lutjanus buccanella (10%), vermillion snapper, Rhomboplites aurorubens (7%), and “others” (14%). In 2000, redfish was exclusively still caught by line. However, by 2007 most snapper was being caught using fish traps and by 2012 there was practically no more line fishing for snapper. These shifts in gear use coincided with a change in fish size, (and species composition) from large adult snapper to smaller sub-adult snapper of about 30 cm fork length. In 2007 the average total trap haul was 28 traps/day while in 2012 it was about 33 traps/day and in 2015 about 25 traps/day. As fishing pressure increased from 2007 to 2012, annual landings seemed to decline from 41.3 tons in 2007 to 34.6 tons in 2012. Since then total landings increased (to 50.5 tons in 2014), but now may have started declining again (39.1 tons in 2015). When looking at CPUE which is an index of population size, it is evident that CPUE (landings) has fluctuated between roughly 2.5-5 kg of snapper per trap, with no appreciable trend. Therefore, the recent changes in total annual catch appear to be largely driven by changes in effort. This peaked in 2014 (at 537 total trips) but was less in 2015 (481 trips). These most recent data hence suggest no worrisome developments for this fishery, other than that the current fish stock is significantly (75%) lower than in the early 1970s “virgin” state. There is currently a small but growing fishery using deep-water long lines to target redfish in deeper waters (average depth: 260 m) where catches are dominated by the wenchman snapper (Pristipomoides aquilonaris) and the queen snapper (Etelis oculatus, sabonechi).

The status of the trap fishery is perceived by the fishers as undesirable with a CPUE 75% lower compared with underexploited conditions. On the 1st April 2017 a six month closed season was implemented through an agreement between fishermen. It is recommended to develop a harvest strategy for the deep-water snapper fishery and ensure that sufficient (on-board) samples are collected.

Shark bycatch

Sharks are considered unwanted bycatch or nuisance in especially the lobster trap fishery. Nurse sharks, were caught in around 60% of the trips using lobster traps but most of the time in low numbers (less than 7 sharks per trips). However for 5% of the trips, large numbers (from 11 up to 71 individuals) were caught. The estimated annual number of discarded nurse sharks varied between 1712 and 2499 individuals, mainly coming from the lobster fishery. Almost all sharks are discarded (alive) and very few sharks were killed and landed. Of 319 trips sampled between 2011 and 2016, a total of 11 landed sharks were observed, most of them from the lobster fishery (7 sharks in 139 samples). Based on our port sampling interviews we estimate that 40 sharks per year (mainly nurse sharks) were landed in the whole Saba Bank fishery. Nevertheless, personal observations during onboard observation show that catches may also amount to tens or even up to 60 sharks per lobster fishing trip (A. Debrot, and J. Odinga, pers. comm.). Further on-board observation is clearly needed to obtain direct figures on shark catch rates. As the Saba Bank is a designated shark sanctuary since August 2015 it is important to work together with the fishermen to fully eliminate all shark taken and ensure that they are released unharmed. The development of nurse shark exclusion devices for the lobster traps would be highly recommended to protect the nurse sharks and to reduce the damage to fishing gear and catch.

Sustainable fish traps

Biodegradable panels: Biodegradable panels did not show any degradation during a 480 daylong experiment but tested panel attachment materials did. Biodegradable panels attached to traps by material with short breakage time (max. 20 days) as required in the current fishery regulations may not be accepted by fishers due to potential loss of catch and time associated with replacing the panels. If the regulations on biodegradable panels is to be maintained, it is recommended to adjust the breakage time to 3-12 months and to clearly describe in the regulations the type and diameter of the material that is to be used to attach the biodegradable panel.

Ghost fishing: In 2012-2015 Saban fishers lost on average 0.6 lobster traps per fishing trip, resulting in ca. 400-600 derelict lobster traps annually. Our experiments show that mortality of reef fish and lobster was low and most fish and lobster appeared to be able to enter and exit the ghost traps freely. Nevertheless, derelict traps kill 2.7 to 7 lobsters and 2.7 - 3.9 kg of reef fish per trap per year. As wire traps continue to ghost fish for roughly two years we estimate the total annual kill by ghost fishing amounts to $23000 - $51000 for reef fish and $46000-$176000 for lobster. Fortunately, simple modification to lobster traps such as correctly functioning escape panels will significantly reduce mortality from ghost fishing. Our studies show that the average deterioration time in days (including range between brackets) for escape panels attached with hemp and cotton is respectively, 105 (85-114), 150 (128-241). All other options such as wire or hog rings lasted more than twice as long and are not recommended.

Escape slots: We examined the effects of biodegradable panels with 2 trap design (5ft D-type traps and 4ft M-type traps) as well as the effect of 25 and 38 mm escape slots on reef fish bycatch and sub-adult snapper catches. Trap type did not affect the average number of lobsters or fish caught per trap. The only exception was for the white grunt for which the catch rates were markedly higher in the larger D-traps. However catch rates in terms of weight of bycatch were almost double for the type D-traps with 25mm escape vents compared with the control traps. This difference was mainly due to an increase in the catch rate of species of intermediate economic value. So the larger 5 ft D-traps catch no more lobster but do catch a lot more bycatch. Hence the larger D-type traps are not recommended.

Lobster traps: Our results indicate that both trap types with escape slot had higher catch rates for lobster than the control traps. There was a significant difference of 0.55 lobster per trap for the experiment with the 38 mm escape vent. The difference for the 25 mm escape slot was not significant (0.20 lobster per trap). The results suggest that crowding with fish reduces lobster entry into traps. It was different for reef fish bycatch. Escape slots of 25 mm greatly increased the catch rate of bycatch species like grunts. In contrast, the 38 mm escape vent reduced the catch rates of bycatch substantially; by about 60% for the D-type traps, and 80% for the M-type traps.

The most important result of these experiment is the observation that both 25mm and 38 mm escape slots and trap size (4ft M-trap or 5ft-D traps) appeared to have little negative effect on lobster catches. The traps with 38 mm escape slots even caught significantly more lobsters (ca. 0.5 lobsters per trap). Therefore, the bycatch of mixed reef fish in the lobster trap fishery could be limited by regulating trap size and the use of escape slots. Reducing trap size and/or implementing 38 mm escape slots will drastically reduce the amount of mixed reef fish without impacting (possibly even improving) the catch of lobster, the main target species.

Snapper traps: Escape vents of 25 mm seem to increase snapper catch rate by about 20% (though not statistically significant). In contrast, escape vents of 38 mm greatly reduced snapper catches. A 25 mm escape vent also increased the proportion of vermillion snapper in the catch. Based on studies elsewhere, Johnson (2010) reported an increase in average size of (reef) fish in traps fitted with 25 mm escape vents. Our experiments indicated that the 25 mm escape slot did function as intended and did not reduce the proportion of sub adult silk snappers.

So as for the effect of escape slots on fish catch the results are consistent: the 25 mm vent increases fish catch while the 38 mm slot lets almost all fish escape and yields low catches. We suggest that this might mean that when traps become too crowded, less fish will enter. By using 25 mm escape vents, small, non-target species easily escape thereby creating more room in the trap for target species.

Whales and dolphins

The cetacean sighting frequency for Saba bank fishing trips amounted to an average of one sighting for every 13.2 trips. Between 2012 and 2016 a total of 142 sightings were generated. Only 25% of whale sightings and 8% of dolphin sightings allowed reliable species identification. Of the 25% of confirmed whale sightings 23% concerned the humpback whale and 2% the sperm whale. While the collected data provide some indication of the presence of cetaceans on and around the bank, clearly, there is much room for improvement of baseline data collection.

Queen conch

After the de facto (but not formal) closure of the conch fishery on the Saba Bank in the mid-1990s, the queen conch population has recovered. Out of the 131 transects conducted during our video survey, adult conch were found in 91 transects, ranging from 16 conch/ha to 882 conch/ha (mean 130.8 conch/ha, 99.7–161.8 95% CI). In 52 transects (40 % of all transects) more than 100 conch/ha were found. So maybe 800 km2 or more of the Saba Bank have conch densities that could justify a limited fishery. Adult queen conch were found at depths of 17 to 58 m, with highest densities documented at 22m. Mating success in queen conch is density dependent and studies recommended that a mean density of 100 adult conch/ha should be the minimum to avoid the risk that recruitment might be impaired. This means that at present a controlled limited fishery should well be possible, if judiciously controlled and regulated. Based on our data, an estimated 14 million adult queen conch are currently present on the Saba Bank in the 20-40 depth zone.

A sustainable annual quota could be set ca. 1 million adult queen conch (ca. 8 % of the adult population). If a fishery is re-opened, it is recommended to: 1) introduce a minimum legal size at 10mm lip thickness and an annual closed season during May-September, 2) ensure that queen conch are landed with shell, 3) regular stock assessment are conducted to adjust the quota and avoid recruitment impairment, 4) identify and open only those areas to the fishery where densities are high enough, 5) set strict regulations on harvesting methods to prevent development of dangerous ‘hookah’ fishing practices. Any development of a conch fishery will take time as both bringing the species in from the sea to land and export will require permits.

Lionfish

Based on observations, it appears that the invasive lionfish first arrived on the Saba Bank between 2008 and 2011. Since then it has spread and is a frequent bycatch species in redfish and lobster traps. Our data show that it had much higher catch rates in the deeper waters during fishing for redfish. Average catches in the last three years amount to about 1 lionfish for every one or two snapper traps hauled. The availability of lionfish bycatch has led to a local market arising. Based on this, several fishermen have expressed interest in testing special traps which concentrate and trap lionfish and may allow the development of a directed deep-water lionfish fishery.  

Date
2017
Data type
Research report
Theme
Research and monitoring
Report number
C077/17
Geographic location
Saba bank

Frame Survey Curaçao’s fishing fleet 2016

A brief inventory of the current fishing capacity (frame survey) of the insular fishing fleet of Curacao was conducted. Curacao is part of the Kingdom of the Netherlands. It lies in the southern Caribbean, approximately 60km off the coast of Venezuela.

Currently no systematic data on fishing intensity nor landings exists of the artisanal fisheries. This data is not only needed for domestic fisheries management purposes but will also contribute to nature conservation. In addition both the FAO as ICCAT have made data requests for the artisanal catches and catch composition to Curacao which cannot be adequately answered currently.

A frame survey was conducted (between September and December 2016) at all homeports and landing sites listed by the Curacao’ Ministry of Health, Environment and Nature, whereby all vessels were counted and described up to a relevant number of characteristics, such as length, use of motors, sails etc. In addition to the frame survey, interviews were held with fishermen, to get some extra information about their vessels, gear and fishery.

In total 294 fishing vessels were recorded. 238 of these vessels were assessed as ‘in use’. Eight-five percent of the vessels (in use) were motorised – either with inboard motors (110) or with outboard motors (96). The 32 remaining vessels were propelled with oars. Most vessels were located in the two main harbours of the island: Caracasbaai and Piscadera. Most vessels (164 of 294) were smaller than 7m .

The data gathered in this frame survey was compared with previous research whereby several developments appear evident:
- the total number of landing beaches has declined,
- the number of fishing vessels has declined compared to 2001 (from 322 – 294),

- the fleet (vessels larger than 5m) is back to the level of the 1980s (in the 1990s the fleet was larger),
- a concentration has taken place of vessels in the 2 main harbours of the island Caracasbaai and Piscaderabaai.

Based on 32 interviews held with fishermen we found that the average age of the fishermen was 55 years old. Most of the fishermen indicated to have ‘always’ been fishing. Twenty of the fishermen said to have more fishers in the family. The fishermen we spoke fished on average 2.8 times a week. For 19 fishermen fishing is their primary source of income, yet amongst them are some whom go only once a week or only in weekends. It is most likely that the latter men also have another source of income, such as a pension (considering their relative high age). The fishermen on average go to sea alone or with 1 assistant.

The average age of the vessels was 24.5 years old. The vessels were motorised, with inboard motors (average of 161 HP - range between 15-400) and outboard motors (average of 18.6 HP - range between 8-48). Thirteen fishermen (all having inboard motorised vessels) indicate to have either a GPS, fishfinder, electric reel or winch on board (or a combination thereof).

The main possible limitations of the research were the timing of the research. As it took place right after the hurricane season it is possible that many smaller vessels would still be stored on land (not in the harbour or at the landing beaches). In addition we have only been able to interview 32 fishers which is a relative low number.

It is recommended to keep the frame survey data up to date, by doing a yearly update. In addition it is recommended to do the next steps (boat activity survey and landings survey) as soon as possible, making sure that the data of the three surveys can be validly combined. 

Date
2017
Data type
Research report
Theme
Research and monitoring
Tags
Report number
C022/17
Geographic location
Curacao
Author