Coral reefs

Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth

Abstract

Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non-framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m−2 yr−1. However, non-framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non-framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean-wide dominance of non-framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non-framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Spatial and demographic consequences of nursery-dependence in reef fishes: an empirical and simulation study

The rainbow parrotfish Scarus guacamaia has an obligate dependence on man- groves at juvenile stages, and, as the largest herbivorous fish in the Caribbean region, its distribution has important implications for coral reefs. The effect of connectivity with mangroves on relative density, biomass and size of S. guacamaia was assessed from over 65 km of visual sur- veys from Bonaire, Caribbean Netherlands. In addition, an individual-based, age-structured, mechanistic model (IBM) was developed to explain dispersal patterns from nurseries for S. guaca- maia. In the IBM, mortality was constant, growth was determined by a von Bertalanffy growth equation, and movement was modeled through a random walk process. Using the IBM, simula- tions were run to generate patterns of density, biomass, and size with distance from nurseries. Rainbow parrotfish were observed as far as 42 km away from the nearest mangroves on Bonaire. Relative density and biomass showed significant exponential declines with distance from the pri- mary mangrove nursery and were significantly higher in high versus low complexity non-man- grove habitats. Mean size increased linearly with distance (r2 = 0.74), reflecting an absence of smaller individuals with greater distance. These results were closely mirrored by the simulation study: density and biomass declined exponentially with distance from nurseries, and size and age increased following saturating functions. The results suggest that mangroves may have the poten- tial to supply individuals much further than previously thought. Both the empirical and simulation studies reaffirm calls to prioritise protection of reef habitats close to nurseries as well as the nurseries themselves. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons

Although reef corals are dependent of the di- noflagellate Symbiodinium, the large majority of corals spawn gametes that do not contain their vital symbiont. This suggests the existence of a pool of Symbiodinium in the environment, of which surprisingly little is known. Reefs around Curac ̧ao (Caribbean) were sampled for free- living Symbiodinium at three time periods (summer 2009, summer 2010, and winter 2010) to characterize different habitats (water column, coral rubble, sediment, the macroalgae Halimeda spp., Dictyota spp., and Lobophora variegata, and the seagrass Thalassia testudinum) that could serve as environmental sources of symbionts for corals. We detected the common clades of Symbiodinium that engage in symbiosis with Caribbean coral hosts A, B, and C using Symbiodinium-specific primers of the hyper- variable region of the chloroplast 23S ribosomal DNA gene. We also discovered clade G and, for the first time in the Caribbean, the presence of free-living Symbiodinium clades F and H. Additionally, this study expands the habitat range of free-living Symbiodinium as environmental Symbiodinium was detected in T. testudinum seagrass beds. The patterns of association between free-living Symbio- dinium types and habitats were shown to be complex. An interesting, strong association was seen between some clade A sequence types and sediment, suggesting that sediment could be a niche where clade A radiated from a free-living ancestor. Other interesting relationships were seen between sequence types of Symbiodinium clade C with Halimeda spp. and clades B and F with T. testudinium. These relationships highlight the importance of some macroalgae and seagrasses in hosting free-living Symbio- dinium. Finally, studies spanning beyond a 1-yr cycle are needed to further expand on our results in order to better understand the variation of Symbiodinium in the environ- ment through time. All together, results presented here showed that the great diversity of free-living Symbiodinium has a dynamic distribution across habitats and time. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Status and Trends of Bonaire's Coral Reefs in 2015: Slow but steady signs of resilience

Bonaire’s coral reefs remain among the healthiest in the Caribbean. Although the island’s reefs have suffered bleaching disturbances similar to those plaguing reefs throughout the Caribbean, they uniquely show signs of recovery. Here we highlight key findings from our March 2015 biennial coral reef monitoring expedition. We put the findings in the context of both the trends recorded since 2003 when we began our regular monitoring and the most recent research related to the factors controlling the structure and functioning of healthy coral reef ecosystems. 

Date
2015
Data type
Research report
Theme
Research and monitoring
Report number
6
Geographic location
Bonaire

Spatiotemporal and species-specific patterns of diseases affecting crustose coralline algae in Curac ̧ao

Abstract Distribution and abundance of coral diseases have been well documented, but only a few studies con- sidered diseases affecting crustose coralline algae (CCA), particularly at the species level. We investigated the spa- tiotemporal dynamics of diseases affecting CCA along the south coast of Curac ̧ao, southern Caribbean. Two syn- dromes were detected: the Coralline White Band Syndrome (CWBS) previously described and the Coralline White Patch Disease (CWPD) reported here for the first time. Diseases were present at all six study sites, and our results did not reveal a relationship between disease occurrence and human influence. Both diseases were more prevalent on the shallower reef flat than on the deeper reef slope, and during the warm/rainy season than during the cold/dry season. The patterns observed were consistent with a positive link between temperature and disease occurrence. Reef flat communities were dominated by Neogoniolithon mamillare and Paragoniolithon solubile, whereas deeper habitats were dominated by Hydrolithon boergesenii. Dis- eases affected all the species encountered, and no prefer- able host was detected. There was a significant relationship between both disease occurrences and CCA cover. Moni- toring of affected patches revealed that 90 % of lesions in CWBS increased in size, whereas 88 % of CWPD lesions regenerated over time. CWBS linear progression rate did not vary between seasons or species and ranged from 0.15 to 0.36 cm month-1, which is in the same order of mag- nitude as rates previously documented. We conclude that diseases have the potential to cause major loss in CCA cover, particularly in shallow waters. As CCA play a key role in reef ecosystems, our study suggests that the emer- gence of diseases affecting these algae may pose a real threat to coral reef ecosystems. The levels of disease reported here will provide a much-needed local baseline allowing future comparisons. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species

Bathymetric distributions of photosynthetic marine invertebrate species are relatively well studied, however the importance of symbiont zonation (i.e. hosting of distinct algal endosymbiont communities over depth) in determining these depth distributions still remains unclear. Here, we assess the prevalence of symbiont zonation in tropical scleractinian corals by genotyping the Symbiodinium of the 25 most common species over a large depth range (down to 60 m) on a Caribbean reef. Symbiont depth zonation was found to be common on a reef-wide scale (11 out of 25 coral species), and a dominant feature in species with the widest depth distributions. With regards to reproductive strategy, symbiont zonation was more common in broadcasting species, which also exhibited a higher level of polymorphism in the symbiont zonation (i.e. number of different Symbiodinium profiles involved). Species with symbiont zonation exhibited significantly broader depth distributions than those without, highlighting the role of symbiont zonation in shaping the vertical distributions of the coral host. Overall, the results demonstrate that coral reefs can consist of highly structured communities over depth when considering both the coral host and their obligate photosymbionts, which probably has strong implications for the extent of connectivity between shallow and mesophotic habitats. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Reproductive natural history and successful juvenile propagation of the threatened Caribbean Pillar Coral Dendrogyra cylindrus

Background

The Caribbean pillar coral Dendrogyra cylindrus was recently listed as a threatened species under the United States Endangered Species Act. One of the major threats to this species is its low, virtually undetectable recruitment rate. To our knowledge, sexually-produced recruits have never been found in over 30 years of surveys of Caribbean reefs. Until recently, the reproductive behavior of D. cylindrus was uncharacterized, limiting efforts to study its early life history, identify population bottlenecks, and conduct outplanting projects with sexually-produced offspring. In Curaçao, we observed the spawning behavior of this species over three years and five lunar cycles. We collected gametes from spawning individuals on three occasions and attempted to rear larvae and primary polyp settlers. 

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals

Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge preda- tors. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals.

An unanticipated outcome of the benthic survey component of this study
was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs. 

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Bonaire
Curacao
St. Eustatius

Fisher and diver perceptions of coral reef degradation and implications for sustainable management

Fishers and divers are the major resource users of Caribbean coral reefs. On Curaçao and Bonaire, reef condition is good relative to the Caribbean average, but fishes and corals have greatly declined over the last few decades. We interviewed 177 fishers and 211 professional SCUBA divers to assess their views on the extent and causes of degradation. Fishers know fish stocks are severely depleted and declining, whereas divers were aware of declines but had “shifted baselines” and consider the reefs healthy. Fishers and divers differ in perceptions of the causes and appropriate remedies for decline. Fishers generally blame external factors such as changes in climate, currents, or industrial fishing offshore, whereas divers primarily blame overfishing and coastal development. Nevertheless, the great majority of both fishers and divers support more management of both fishing and diving. Thus the social climate is ripe for balanced and strong restrictions on both groups for reef recovery and sustainable use. Exclusion of both fishers and divers from protected areas of significant size around the islands would be a major step forward towards the long-term conservation of reef resources.

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Reefbase

A great part of the coral reef resources in the world are in danger of destruction due to over exploitation, degradation of habitat and, possibly, changes in global climate. Globally, the resulting loss of income from fisheries is estimated to be billions of dollars a year and affects many millions of people. Few figures are available to indicate the sustainable yields that might be extracted for different reef types, current and potential yields of different reef species, how yields are affected by declining reef health and loss of productive capacity, and the value of non-extractive uses of reefs (such as tourism). Sophisticated methods to quantify the deterioration of coral reefs have been initiated in some areas, while hardly any assessment or monitoring activities exist in others. Information from these activities is usually published in the primary scientific literature and may not be readily available or understood by a non-technical reader. A larger body of information has been compiled in technical reports, which are generally for limited distribution. This makes it difficult for the people tasked with managing coral reefs to obtain the information needed for good management even when comprehensive information exists. ReefBase gathers available knowledge about coral reefs into one information repository. It is intended to facilitate analyses and monitoring of coral reef health and the quality of life of reef-dependent people, and to support informed decisions about coral reef use and management. ReefBase is the official database of the Global Coral Reef Monitoring Network (GCRMN), as well as the International Coral Reef Action Network (ICRAN). The ReefBase Project is housed at the WorldFish Center in Penang, Malaysia, with funding through ICRAN from the United Nations Foundation (UNF).

 

Key Objectives of ReefBase

  • Develop a relational database and information system for structured information on coral reefs and their resources that will serve as a computerized encyclopedia and analytical tool for use in reef management, conservation and research.
  • Provide key information to support decision-making by fisheries and environmental managers in developing countries, especially those concerned with improving the livelihoods of poor fishers.
  • Collaborate with other national, regional, and international databases, and GIS facilities relating to reefs, and provide a means of comparing and interpreting information at the global level.
  • Develop and distribute analytical routines for ReefBase that will make full use of the information and ensure appropriate interpretation and synthesis.
  • Serve as the central repository for data of the Global Coral Reef Monitoring Network (GCRMN) and the International Coral Reef Action Network (ICRAN).
  • Define criteria for reef health and use them to refine procedures for coral reef assessments and to determine coral reef status at the regional and global level.
  • Determine the relationships among coral reef health, fishery production and the quality of life of people dependent on reefs.
Date
2015
Data type
Portal
Theme
Education and outreach
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten
Image
Reefbase