Coral reefs

Reefbase

A great part of the coral reef resources in the world are in danger of destruction due to over exploitation, degradation of habitat and, possibly, changes in global climate. Globally, the resulting loss of income from fisheries is estimated to be billions of dollars a year and affects many millions of people. Few figures are available to indicate the sustainable yields that might be extracted for different reef types, current and potential yields of different reef species, how yields are affected by declining reef health and loss of productive capacity, and the value of non-extractive uses of reefs (such as tourism). Sophisticated methods to quantify the deterioration of coral reefs have been initiated in some areas, while hardly any assessment or monitoring activities exist in others. Information from these activities is usually published in the primary scientific literature and may not be readily available or understood by a non-technical reader. A larger body of information has been compiled in technical reports, which are generally for limited distribution. This makes it difficult for the people tasked with managing coral reefs to obtain the information needed for good management even when comprehensive information exists. ReefBase gathers available knowledge about coral reefs into one information repository. It is intended to facilitate analyses and monitoring of coral reef health and the quality of life of reef-dependent people, and to support informed decisions about coral reef use and management. ReefBase is the official database of the Global Coral Reef Monitoring Network (GCRMN), as well as the International Coral Reef Action Network (ICRAN). The ReefBase Project is housed at the WorldFish Center in Penang, Malaysia, with funding through ICRAN from the United Nations Foundation (UNF).

 

Key Objectives of ReefBase

  • Develop a relational database and information system for structured information on coral reefs and their resources that will serve as a computerized encyclopedia and analytical tool for use in reef management, conservation and research.
  • Provide key information to support decision-making by fisheries and environmental managers in developing countries, especially those concerned with improving the livelihoods of poor fishers.
  • Collaborate with other national, regional, and international databases, and GIS facilities relating to reefs, and provide a means of comparing and interpreting information at the global level.
  • Develop and distribute analytical routines for ReefBase that will make full use of the information and ensure appropriate interpretation and synthesis.
  • Serve as the central repository for data of the Global Coral Reef Monitoring Network (GCRMN) and the International Coral Reef Action Network (ICRAN).
  • Define criteria for reef health and use them to refine procedures for coral reef assessments and to determine coral reef status at the regional and global level.
  • Determine the relationships among coral reef health, fishery production and the quality of life of people dependent on reefs.
Date
2015
Data type
Portal
Theme
Education and outreach
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten
Image
Reefbase

Wider Caribbean Region Global Coral Reef Monitoring Network: Annex D - Biophysical Baselilne Monitoring Methods

The GCRMN baseline scientific monitoring methods provide a basic framework for existing and developing monitoring programs to contribute data that support a regional understanding of status and trends of Caribbean coral reefs. The purpose of these methods is to collect data that will contribute to our understanding of the processes that shape coral reefs and to provide actionable advice to policy makers, stakeholders, and communities. In order to achieve these goals, the GCRMN community seeks to collect comprehensive and inter-comparable data that build from a modern scientific perspective of reef monitoring.
METHODS
The GCRMN methods have been developed to provide a systematic snapshot of the ecosystem health of coral reefs and, when repeated through time, insight into temporal trends in reef condition. Based on the conclusions of a retrospective analysis of trends in reef health over the past decades, GCRMN members have agreed that there is great value in coordinating and standardizing future monitoring efforts. To date, Caribbean regional monitoring efforts often collect non-overlapping types of data about coral reefs, or the efforts use non-comparable methods for describing similar parts of the reef ecosystem. The goal of this document is to define a set of data and data collection techniques that will be used by Caribbean GCRMN members. These methods reflect long-standing, vetted scientific protocols and provide a compromise between practical applicability and ease of comparison between existing methods and long-term datasets.
The GCRMN methods describe six elements of the coral reef ecosystem – (1) abundance and biomass of key reef fish taxa, (2) relative cover of reef-building organisms (corals, coralline algae) and their dominant competitors, (3) assessment of coral health and (4) recruitment of reef-building corals, (5) abundance of key macro-invertebrate species, and (6) water quality. These elements provide an overview of the current condition of the coral reef ecosystem as well as an indication of likely future trajectories. GCRMN recognizes that by collecting information about these elements across multiple locations, with regular re-sampling through time, it will be possible to more knowingly describe the status of coral reef health in the Caribbean and to assess the effectiveness of local and regional management efforts.
These methods are designed to provide a basic and regional summary of reef health. Importantly, the elements that are included for GCRMN monitoring are not all-inclusive, and many partner members may be interested in collecting more detailed or spatially expansive data. However, the GCRMN methods should be viewed as a minimum set of measurements to provide a reliable snapshot of reef condition – data elements should not be selected individually but instead will be collected in sum. Given the inherent complexity of reef processes, a multidimensional description of coral reef health is essential to provide a coherent ‘baseline’ of coral reef condition in a dynamic and changing world.

Date
2014
Data type
Monitoring protocol
Theme
Research and monitoring

Classifying benthic habitats and deriving bathymetry at the Caribbean Netherlands using multispectral Imagery

Benthic habitats (habitats occurring at the bottom of a water body) and coral reef ecosystems provide many functions. Currently, however, coral reefs are threatened by a number of factors and degrade rapidly. Benthic maps are important for management, research and planning. Coral communities in the Caribbean Dutch island of St. Eustatius are generally in a good condition, but the benthic communities around St. Eustatius have not been yet accurately mapped.
Remote sensing imagery has been found to be a very useful tool in providing timely and up-to-date information for benthic mapping and offers an effective approach to complement the limitation of field sampling. Remote sensing in water, however, presents challenges mainly due to the complex physical interactions of absorption and scattering between water and light. Shorter wavelengths (-450 nm) penetrate deepest into the water column and longer wavelengths (-500-750 nm) are more rapidly absorbed and scattered. Therefore, the potential extent of use of remote sense imagery in the oceans relies more on shorter wavelengths (blue band), which have inherently noisier signals due to atmospheric effects.
This research explores the utility of multispectral imagery to identify and classify marine benthic habitats in the Dutch Caribbean island of St Eustatius. These include the comparison of two sensors with different spatial and spectral resolution, QuickBird (2.4m, 4 bands) and WorldView-2 (2.0m, 8 bands) for mapping benthic habitats. The study first investigates the existing methodologies for benthic habitat classification. The benefits of atmospheric correction, sun glint effect correction and water column attenuation correction on the accuracy of classification maps are also assessed. Then, an object and pixel based supervised classifications for the characterization of sea grass, sand and coral are performed. This research also evaluates the possibility to extract water depth from multispectral satellite imagery by the use of a ratio transform method. Bathymetric data is important for water column correction, to improve the classification accuracy and for the study of the ecology of the habitats.
Results showed that the best results for pixel-based image classification in QuickBird and WoldView-2 imagery were obtained after deglinting the image, with accuracies of 49.3% and 51.9% respectively. The sunglint removal method improved the total accuracy of benthic habitat mapping, by increasing before and after deglinting 3.4% for QuickBird and 6.3% for WorldView-2. Object-based classification provided slightly better classification results, with a 53.7% accuracy for QuickBird and 56.9% accuracy for WorldView-2. Therefore, it can be concluded that an object-oriented approach to image classification shows potential for improving benthic mapping. The classification accuracy did not increase after compensation for water column effects.
The effectiveness of the ratio method to calculate the bathymetry using multispectral imagery has been confirmed. The coefficients of determination (r2) achieved are statistically significant, 0.66 for QuickBird, and 0.41 for WorldView-2 (BG ratio) for a linear relation. The root mean square errors are 4.02 m for QuickBird and 5.11 m for WorldView-2. It has been proved that this method works better for shallow areas, with a root mean square error of 2.32 m and 2.47 m, respectively. Results also indicate that the ratio method is sensitive to variable bottom type. Overall, better bathymetric values were obtained with QuickBird than with WorldView-2.
This research provides a baseline for future benthic habitat classification of the Dutch Caribbean islands using remote sensing. The results of this study are a good example of how remote sensing data can be a useful and cost effective method to map benthic habitats and calculate bathymetry.

Date
2013
Data type
Research report
Theme
Research and monitoring
Report number
GIRS-2013 -18
Geographic location
St. Eustatius
Author

Status and Trends of Caribbean Coral Reefs - Part 2, Reports for individual countries and territories

Outbreaks of Acropora and Diadema diseases in the 1970s and early 1980s, overpopulation in the form of too many tourists, and overfishing are the three best predictors of the decline in Caribbean coral cover over the past 30 or more years based on the data available. Coastal pollution is undoubtedly increasingly significant but there are still too little data to tell. Increasingly warming seas pose an ominous threat but so far extreme heating events have had only localized effects and could not have been responsible for the greatest losses of Caribbean corals that had occurred throughout most of the wider Caribbean region by the early to mid 1990s.
In summary, the degradation of Caribbean reefs has unfolded in three distinct phases:
1. Massive losses of Acropora since the mid 1970s to early 1980s due to WBD. These losses are unrelated to any obvious global environmental change and may have been due to introduced pathogens associated with enormous increases in ballast water discharge from bulk carrier shipping since the 1960s.
2. Very large increase in macroalgal cover and decrease in coral cover at most overfished locations following the 1983 mass mortality of Diadema due to an unidentified and probably exotic pathogen. The phase shift in coral to macroalgal dominance reached a peak at most locations by the mid 1990s and has persisted throughout most of the Caribbean for 25 years. Numerous experiments provide a link between macroalgal increase and coral decline. Macroalgae reduce coral recruitment and growth, are commonly toxic, and can induce coral disease.

3. Continuation of the patterns established in Phase 2 exacerbated by even greater overfishing, coastal pollution, explosions in tourism, and extreme warming events that in combination have been particularly severe in the northeastern Caribbean and Florida Keys where extreme bleaching followed by outbreaks of coral disease have caused the greatest declines.
 
In: Status and Trends of Caribbean Coral Reefs: 1970 - 2012. Jackson, J.B.C., Donovan, M.K., Cramer, K.L. Lam, W.. - Washington : Global Reef Monitoring Network, 2014 - p. 211 - 215.
 
Retreived from http://www.wageningenur.nl on April13, 2015

Date
2014
Data type
Book
Theme
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten

Status and Trends of Caribbean Coral Reefs - Part 1, Overview and synthesis for the wider Caribbean region

Outbreaks of Acropora and Diadema diseases in the 1970s and early 1980s, overpopulation in the form of too many tourists, and overfishing are the three best predictors of the decline in Caribbean coral cover over the past 30 or more years based on the data available. Coastal pollution is undoubtedly increasingly significant but there are still too little data to tell. Increasingly warming seas pose an ominous threat but so far extreme heating events have had only localized effects and could not have been responsible for the greatest losses of Caribbean corals that had occurred throughout most of the wider Caribbean region by the early to mid 1990s.
In summary, the degradation of Caribbean reefs has unfolded in three distinct phases:
1. Massive losses of Acropora since the mid 1970s to early 1980s due to WBD. These losses are unrelated to any obvious global environmental change and may have been due to introduced pathogens associated with enormous increases in ballast water discharge from bulk carrier shipping since the 1960s.
2. Very large increase in macroalgal cover and decrease in coral cover at most overfished locations following the 1983 mass mortality of Diadema due to an unidentified and probably exotic pathogen. The phase shift in coral to macroalgal dominance reached a peak at most locations by the mid 1990s and has persisted throughout most of the Caribbean for 25 years. Numerous experiments provide a link between macroalgal increase and coral decline. Macroalgae reduce coral recruitment and growth, are commonly toxic, and can induce coral disease.

3. Continuation of the patterns established in Phase 2 exacerbated by even greater overfishing, coastal pollution, explosions in tourism, and extreme warming events that in combination have been particularly severe in the northeastern Caribbean and Florida Keys where extreme bleaching followed by outbreaks of coral disease have caused the greatest declines.
 
In: Status and Trends of Caribbean Coral Reefs: 1970 - 2012. Jackson, J.B.C., Donovan, M.K., Cramer, K.L. Lam, W.. - Washington : Global Reef Monitoring Network, 2014 - p. 55 - 154.
Retreived from http://www.wageningenur.nl on April13, 2015

Date
2014
Data type
Book
Theme
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten

A baseline water quality assessment of the coastal reefs of Bonaire, Southern Caribbean

Bonaire is considered to harbor some of the best remaining coral reefs of the Caribbean, but faces multiple pressures including eutrophication. We measured multiple water quality indicators twice annually, from November 2011 to May 2013, at 11 locations at the west coast of Bonaire. This study resulted in 834 data points. DIN concentrations ranged from below quantification to 2.69 μmol/l, phosphate from below quantification to 0.16 μmol/l, and chlorophyll-a from 0.02 to 0.42 μg/l. Several indicators showed signs of eutrophication, with spatial and temporal effects. At southern and urban locations threshold levels of nitrogen were exceeded. This can be a result of brine leaching into sea from salt works and outflow of sewage water. Chlorophyll-a showed an increase in time, and phosphorus seemed to show a similar trend. These eutrophication indicators are likely to exceed threshold levels in near future if the observed trend continues. This is a cause for concern and action.

doi:10.1016/j.marpolbul.2014.06.054

 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Nutrient Enrichment and Eutrophication on Fringing Coral Reefs of Bonaire and Curaçao, Netherlands Antilles, 2006-2008

Land-based nutrient pollution is a major stressor on coral reef communities around the Caribbean region and globally. To assess the status of nutrient enrichment and eutrophication on Bonaire and Curacao’s coral reefs, we conducted a comparative nutrient monitoring program that included seasonal sampling for nutrients (ammonium, nitrate, DIN, SRP, TDN, TDP), phytoplankton biomass (Chl a), stable nitrogen isotopes (ð15N) in reef macroalgae, and biotic cover (point count analysis of video transect data) of shallow and deep reef sites between March 2006 and June 2008. Ammonium dominated the DIN pool on both islands and the highest concentrations (~10 µM) occurred on Bonaire’s reef sites adjacent to the Cargill salt ponds. DIN concentrations averaged > 1 µM on both shallow and deep reefs of both islands, indicating that these reefs are now above the DIN threshold noted to support expansion of algal turf, macroalgae and coral diseases. SRP concentrations averaged ~ 0.1 µM on both islands, a level that also represents the SRP threshold for eutrophication on coral reefs. DON and DOP dominated the TDN and TDP pools; TDN/TDP ratios averaged 52 on Bonaire and 45 on Curacao, indicating strong P-limitation of algal growth. Mean Chl a concentrations were higher on Curacao (0.25 µg/l) than Bonaire (0.19 µg/l) and the highest Chl a concentrations on both islands occurred on reefs adjacent to urbanized, nutrient enriched areas. In contrast, low Chl a values of ~ 0.05-0.1 µg/l occurred at the upstream reef sites and the offshore reference site, underscoring the importance of land-based nutrient enrichment to microbial growth and eutrophication on fringing reefs of both islands. The highest macroalgal ð15N values (> + 3 ‰) occurred at the MegaPier and Piscadera Bay on Curacao, which reflects the highest watershed sewage nitrogen inputs of all reef sites in the study. The lower ð15N (< + 2 ‰) values at the other reef sites reflect lower levels of sewage treatment as well as contributions from other nitrogen sources (nitrogen fixation, atmospheric inputs) that have lower source ð15N values. Reefs on both islands were dominated (~ 75 % cover) by benthic algae but showed distinct differences in algal composition; Bonaire’s reefs had high cover of turf and low cover of macroalgae compared to the opposite pattern on Curacao. Our results suggest that the recent expansion of benthic algae and loss of coral cover on reefs in Bonaire and Curacao are not simply the result of top-down human pressures (e.g., overfishing) alone, but also reflect strong bottom-up effects from land-based nutrient pollution.

The data of the study can be found here

Date
2011
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Saba Bank Research Expedition 2013 - Progress Report

The Saba Bank is the largest submerged carbonate platform of 2,200 km2 in the Caribbean Sea, which lies partially within the Exclusive Economic Zone of the Netherlands and partially within the territorial waters of Saba and St. Eustatius. The Saba Bank houses an expansive coral reef ecosystem with a rich diversity of species and as such is also an important source of commercial fish for the nearby islands.

The Saba Bank furthermore forms the largest protected area of the Kingdom of the Netherlands, after the Dutch part of the Wadden Sea in Europe. It was declared a protected area by the Dutch Government in 2010 and has been registered as such in the Specially Protected Areas and Wildlife (SPAW) protocol of the Cartagena Convention for the Protection and Development of the Marine Environment of the Wider Caribbean. In 2012 it was internationally declared a Particularly Sensitive Sea Area (PSSA) by the International Maritime Organization (IMO) and an Ecological or Biological Significant Area (EBSA) by the Convention on Biological Diversity (CBD). As there are no large land masses nearby, the Saba Bank can be considered as relatively pristine and remote from human influences. Anthropogenic threats such as fisheries and environmental threats such as climate change, sea surface temperature increase and acidification, however, also threaten the Bank’s coral reefs.

As part of the Saba Bank research program 2011-2016, commissioned by the Dutch Ministry of Economic Affairs (EZ), expeditions to the Saba Bank were conducted in October 2011 and from 19 to 26 October 2013. The Saba Bank research program aims to obtain information on the biodiversity, ecological functioning and carrying capacity for commercial fisheries to facilitate sustainable management of the area. The expedition was funded by the Dutch Ministry of Economic Affairs and the World Wildlife Fund in the Netherlands.

The primary objectives of the 2011 and 2013 research expeditions were to collect data on benthic and reef fish communities, and on sponges and nutritional sources of the sponge community. Studies added to the 2013 expedition were research into the structural complexity of the reef; coral-algal interactions; and connectivity between populations. An international, multidisciplinary team of marine biologists investigated the coral reef structure as well as the spatial variation in species assemblages and population genetic connectivity of corals, algae, fish and sponges during eleven SCUBA dives at 20-30m depth.

During the expedition thirty-three 50m long transects resulted in more than 2000 images of the reef, and over 5000 fish counts of almost 100 fish species. A preliminary comparison with the data from 2011 gives the impression of a reduction in snappers, groupers and grunts, while there were noticeably more sharks. There were fewer algae on the Saba Bank than in 2011, possibly indicating a healthier reef, although there appeared to be a gradient of increasing algal cover towards the island of Saba. It seems unlikely that this is related to anthropogenic activities on the island, but more likely to natural causes.

An overview of collected data and preliminary results is given in this progress report. Further comparative analysis between the data collected in the 2011 and 2013 and further analysis between research components, e.g. between algal biomass, herbivorous fish biomass and nutrient levels, will be performed in 2014. This may give more information on the potential causes of the observed south-north algal gradient.

The expedition elicited large public interest and media coverage in both Dutch and Caribbean media (details provided in Appendix F). The work of the researchers, both above and under water, was also recorded on film as part of the documentary series Marine Life for Discovery Channel.

Date
2014
Data type
Research report
Theme
Research and monitoring
Report number
C086/14
Geographic location
Saba bank

Living reef map of Bonaire

Living Reef map of Bonaire (GIS). Paper source from 1985. Scanned, geo-referenced and digitized in 2011-2012.

De oorspronkelijke atlas omvat een uitgebreide inventarisatie en kartering (schaal 1:4000) van de koraalriffen van Curacao en Bonaire. De kaartbladen zijn gedigitaliseerd (images) en voor deze kaart van Bonaire door Imares geplaatst op basis van de originele referentie UTM op internationale elipsoide (1924). Hierop zijn de herkenningen uitgevoerd en de ontstane shapes zijn daarna geprojecteerd naar WGS84_UTM_19n en verder bewerkt. De herkenning van de door kleur weergegeven types heeft plaatsgevonden met e-Cognitionper kaartblad, waarna alle bladen aan elkaar gekoppeld zijn. De toekenning van verschillende types en bedekkingsgraad is met de hand uitgevoerd. De toekenning van het kaartblad is gebeurd op basis van het laagste nummer waar een polygoon voorkomt.

Date
2012
Data type
Maps and Charts
Theme
Research and monitoring
Geographic location
Bonaire
Image