coral recruitment

Applying coral breeding to reef restoration: best practices, knowledge gaps, and priority actions in a rapidly evolving field

Reversing coral reef decline requires reducing environmental threats while actively restoring reef ecological structure and func-tion. A promising restoration approach uses coral breeding to boost natural recruitment and repopulate reefs with geneticallydiverse coral communities. Recent advances in predicting spawning, capturing spawn, culturing larvae, and rearing settlers haveenabled the successful propagation, settlement, and outplanting of coral offspring in all of the world’s major reef regions. Never-theless, breeding efforts frequently yield low survival, reflecting the type III survivorship curve of corals and poor condition ofmost reefs targeted for restoration. Furthermore, coral breeding programs are still limited in spatial scale and species diversity.Here, we highlight four priority areas for research and cooperative innovation to increase the effectiveness and scale of coralbreeding in restoration: (1) expanding the number of restoration sites and species, (2) improving broodstock selection to maximizethe genetic diversity and adaptive capacity of restored populations, (3) enhancing culture conditions to improve offspring healthbefore and after outplanting, and (4) scaling up infrastructure and technologies for large-scale coral breeding and restoration. Pri-oritizing efforts in these four areas will enable practitioners to address reef decline at relevant ecological scales, re-establish self-sustaining coral populations, and ensure the long-term success of restoration interventions. Overall, we aim to guide the coral res-toration community toward actions and opportunities that can yield rapid technical advances in larval rearing and coral breeding,foster interdisciplinary collaborations, and ultimately achieve the ecological restoration of coral reefs.

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Evaluation of coral reef management effectiveness using conventional versus resilience-based metrics

With increasing stressors to coral reefs, defining tools that evaluate their dynamics and resilience is important to interpret system trajectories and direct conservation efforts. In this context, surveys must go beyond conven- tional monitoring approaches that focus on abundance and biomass of key groups and quantify metrics that better assess ecological processes and ecosystem trajectories. By measuring a variety of conventional (e.g. proportional cover of broad benthic groups, biomass of herbivorous fish) and complementary resilience-based metrics (e.g. algal turf height, coral recruitment rates, juvenile coral densities, herbivorous fish grazing rates), this study evaluated the ecosystem responses to community-based management in Fiji. The study was conducted across three paired tabu areas (periodically closed to fishing) and adjacent fished sites. Conventional metrics reflected no management effect on benthic or herbivorous fish assemblages. In contrast, the complementary metrics generally indicated positive effects of management, particularly within the benthos. Significant differ- ences were observed for turf height (33% lower), coral recruitment rate (159% higher) and juvenile coral density (42% higher) within areas closed to fishing compared to adjacent open reefs. In addition, turf height was in- versely related to coral recruitment and juvenile coral density, and longer turfs (≥5 mm) were more competitive in interaction with corals. These results emphasise that conventional metrics may overlook benefits of local management to inshore reefs, and that incorporating complementary resilience-based metrics such as turf height into reef survey protocols will strengthen their capacity to predict the plausible future condition of reefs and their responses to disturbances. 

Date
2018
Data type
Scientific article
Theme
Research and monitoring

Coralline algae disease reduces survival and settlement success of coral planulae in laboratory experiments

Disease outbreaks have been involved in the deterioration of coral reefs worldwide and have been par- ticularly striking among crustose coralline algae (CCA). Although CCA represent important cues for coral settle- ment, the impact of CCA diseases on the survival and settlement of coral planulae is unknown. Exposing coral larvae to healthy, diseased, and recently dead crusts from three important CCA species, we show a negative effect of disease in the inductive CCA species Hydrolithon boergesenii on larval survivorship of Orbicella faveolata and settlement of O. faveolata and Diploria labyrinthi- formis on the CCA surface. No effect was found with the less inductive CCA species Neogoniolithon mamillare and Paragoniolithon accretum. Additionally, a majority of planulae that settled on top of diseased H. boergesenii crusts were on healthy rather than diseased/dying tissue. Our experiments suggest that CCA diseases have the po- tential to reduce the survivorship and settlement of coral planulae on coral reefs. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Journal

A Report on the Status of the Coral Reefs of Bonaire 2003 with Advice on the Establishment of Fish Protection Areas

Bonaire has long been considered to have amongst the healthiest reefs of the Caribbean. However, at the 2002 Annual Meeting of Pew Fellows for Marine Conservation in Bonaire, several scientists with a long history of research on Bonaire’s coral reefs, expressed concern over the future of the island’s reefs. Specifically, they identified the decline in large predatory fish such as groupers as a noticeable change during the past decade. They suspected that this change resulted from increased fishing pressure on Bonaire’s reefs. They also suggested the Bonaire authorities take action to protect the reef-fish stocks. In response to those concerns, officials of the Bonaire Marine Park consulted with scientists and fishermen on Bonaire to explore the possibility of establishing fish protected areas (FPAs), as a way to protect the reef fish stocks. If FPAs improve both fish stocks and the condition of the coral reef, all stakeholders will profit. If fish stocks increased significantly in FPAs, a “spill over” of these fish to adjacent fished areas would be expected. Also, fish that perform important ecological functions could improve the quality of the coral reef ecosystem. Therefore, areas protected from fishing should have healthier coral reefs, which would also improve the island’s valuable ecotourism businesses. The Pew Fellows program funded a research project designed to identify potential FPAs. The Bonaire Marine Park authority, in consultation with the local fishing community would determine the location and size of the FPAs. To monitor the effects of fish protection areas so fishing impacts can be isolated from other factors (such as natural changes, shore-based impacts or effects of scuba divers), an equal number of similar reef sites were selected for study, with half closed to fishing while half remaining open (as “control” reefs). This report reviews the status and recent trends of coral reefs in the Caribbean and Bonaire. It identifies the key features of healthy reefs and how Bonaire’s reefs compares with those elsewhere in the Caribbean. The seven chapters go into scientific detail on factors contributing to the condition of Bonaire’s reefs as of March and April 2003. Special focus will be on factors that threaten reef health or are critical to reef resilience such as seaweed overgrowth, nutrient inputs from land and the ecology of juvenile corals. The report concludes with chapters on the socioeconomic effects of Bonaire’s coral reefs on the fishing and diving industries that depend on them.
Summary Results 2003: The Biological Status of the Coral Reefs of Bonaire & Socioeconomic Implications
 In March and April of 2003, teams of researchers studied the coral reefs of Bonaire to establish the baseline conditions that currently exist and against which trends can be determined and future changes from fish protection areas be assessed. Six study sites were chosen with advice from the Bonaire Marine Park. They represent a range of comparable reefs minimally affected by the 1999 Hurricane Lenny. The sites selected for this study were: Windsock, Plaza, Forest on Klein Bonaire, Scientifico, Barcadera and Karpata (Fig. 0.4). When feasible, parallel studies were conducted at 5 and 10 m depths, however, only the latter depth had fully developed reefs at all sites. The study was designed to quantify the patterns of abundance of the dominant reef organisms as well as to study the processes that control their abundances or threaten their stability. This was done to establish a baseline and to determine if significant differences exist among any of the study sites that would make them a poor choice as a FPA. We also examined some socioeconomic factors related to fishing and scuba diving activities if FPAs are established in Bonaire.

Date
2003
Data type
Research report
Theme
Research and monitoring
Report number
1
Geographic location
Bonaire