bioindicator

Seagrass as bioindicator for eutrophication and pollution in the coastal bays of Bonaire, Caribbean Netherlands

MSc thesis

The economy of Bonaire is highly dependent on tourism. Tourists are drawn to Bonaire because of the beautiful nature and biodiversity in the coastal ecosystems, e.g, mangrove forests, seagrass meadows, coral reefs. Therefore, it is important to protect these coastal ecosystems. Currently, eutrophication and pollution are serious threats to Bonaire’s mangrove forests and seagrass meadows through terrestrial run-off and influx of Sargassum. Seagrasses are known to be sensitive to local environmental changes by bioaccumulation of chemicals and nutrients through absorption in their tissues. In this study, we used turtle grass (Thalassia testudinum) as a bioindicator of spatial and temporal variation in eutrophication and pollution in five different bays on Bonaire. We found that T. testudinum is a good bioindicator of eutrophication and pollution. Analysis of stable isotope signatures (δ13C, δ15N), nutrient (%N, %P, %S) and trace metal content (%As, %Cd, %Co, %Fe, %Mn, and %Ni) in T. testudinum leaf samples
revealed that Lagun was the most eutrophic and polluted bay on Bonaire. The high eutrophic and polluted state in Lagun is mainly due to a nearby landfill, large catchment area, and influxes of pelagic Sargassum spp.. In Lac Bay, higher sulfide stress was observed in T. testudinum leaf tissues in 2019 compared to 2015, which may have hindered the uptake of N and P by T. testudinum. The difference in sulfide stress between 2015 and 2019 is due to the massive influx of Sargassum that occurred in 2018. However, we suggest a possible recovery given better uptake of N and P and lower sulfur content in T. testudinum leaf tissues in 2022. This may indicate less sulfide stress in 2022 compared to 2019. In Lac Bay in 2022, biochemical content of T. testudinum leaf tissues collected at fixed sampling sites where the direct cumulative effect of Sargassum influxes was assumed to be highest (i.e., west of Lac Bay), were similar to tissues collected in areas with no or intermediate direct impact of Sargassum. This may also suggest recovery of T. testudinum that has survived the most severe influx in 2018. We showed that Bonaire’s coastal ecosystems are threatened by eutrophication and pollution through land-based run-off and the influx of pelagic Sargassum. Hence, we want to encourage the local government with this study that nature restoration measures need to be taken immediately to protect their coastal ecosystems.
 

Date
2022
Data type
Research report
Theme
Research and monitoring
Geographic location
Bonaire

Christmas tree worms (Spirobranchus giganteus) and their role as bioindicators of environmental stress on coral reefs of Bonaire, N.A.

The use of biological entities as indicators of environmental stress can provide links between changes in ecological conditions and ecosystem productivity. Historically, bioindicators have been used as a rapid-assessment tool of areas declining in sustainability for the inhabiting organisms. This study investigated the utility of sessile, filter feeding Christmas tree worms (Spirobranchus giganteus) as bioindicators of the presence of potential coral reef stressors. Christmas tree worm density was compared at low impact sites (> 200 m from a commercial establishment) and high impact sites (< 200 m from a commercial establishment). For each site, four quadrats were randomly placed along a 10 m transect at 6, 12 and 18 m depths to assess percent live coral cover and Christmas tree worm density. These data were compared with potential environmental stressors such as excess nutrients (nitrite, nitrate, ammonia and phosphate), human gut (Enterococcus) bacteria, sedimentation rates, and sediment particle size distributions between high and low impacted sites and among depths. Approximately 97% of the worms inhabited live coral. Live coral cover was similar for 12 and 18 m at both high and low impacted sites (~ 17 % - 20 %) but significantly lower at 6 m depth (~ 2 % - 8 %). Despite the similarity in live coral cover at depth, there were significantly more Christmas tree worms at 12 m of high impact sites. At all other sites and depths, the worms never exceeded ~ 1.5 worms m-2. At 12 m, water chemistry analyses did not show any differences between site impact except for phosphate, with significantly greater concentrations at high impact sites. Bacterial loads, sedimentation rate and particle size distributions did not show any differences between site impact although there were finer sediments at high impact sites and coarser sediments at low impact sites. S. giganteus may be found at high densities at high impact sites due to a greater availability of food acquired through filter-feeding biota. Therefore, they may be used as novel indicators of the presence of environmental stressors, such as excess nutrients and finer sediments, in Caribbean coral reef systems.

This student research was retrieved from Physis: Journal of Marine Science VI (Fall 2009)19: 58-65 from CIEE Bonaire.

Date
2009
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Author

Using prey fish species as bioindicators of anthropogenic stress and predictors of predator density and diversity on coral reefs in Bonaire, N.A.

Bioindicator species have been used to determine changes in water quality and the effect of pollution at sites of environmental concern. Increasingly degraded water quality throughout the Caribbean is leading marine park managers and scientists to use bioindicator organisms to rapidly detect differences in water chemistry by determining connections between environmental parameters and changes in reef fish communities. This study sought to determine bioindicator prey species that could provide early detection of changes as a result of anthropogenic activities in the coastal waters of Bonaire, N.A. The effects of these parameters on the density and diversity of reef fish species was compared between 4 sites of “more (MI)” and 4 sites of “less (LI)” anthropogenic impact (200 m from of coastal development, respectively). Fish communities were surveyed using a modified version of the AGRRA methodology during the morning and evening. Two 30x2 m transects at 12 m depth were used at each site to survey both prey and predator fish species. Water chemistry including nutrient, bacterial and sedimentation levels were also analyzed to attempt to determine the factor(s) driving the changes. This study revealed significantly greater densities and a higher diversity of prey and predatory fish species at MI sites versus LI sites during the morning and the evening. The species that was found at greatest densities for both LI and MI sites was Stegastes partitus, with significantly more S. partitus at MI sites during both the morning and evening. Thus, S. partitus may be a possible bioindicator of stressors on the reefs in Bonaire. The use of S. partitus as a bioindicator of anthropogenic stress may help increase the effectiveness of marine management protocols in Bonaire and provide a basis for determining bioindicator species for monitoring coastal water quality throughout the Caribbean. None of the water chemistry parameters studied differed between MI and LI sites, therefore, the driver(s) of the differences in prey species (e.g. S. partitus) may be unaccounted for in this study as a result of time lags in the coral reef ecosystem.

This student research was retrieved from Physis: Journal of Marine Science VII (Spring 2010)19: 12-20 from CIEE Bonaire.

Date
2010
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Author

Christmas tree worms (Spirobranchus giganteus) as a potential bioindicator species of sedimentation stress in coral reef environments of Bonaire, Dutch Caribbean

The effect of land-based pollution on Bonaire’s coral reef ecosystem has not been well-quantified. Observations of the coral reefs of Bonaire show a great abundance of the polychaete Spirobranchus giganteus. This study investigated whether S. giganteus is sensitive to the environmental stress caused by wastewater pollution and therefore could be used as a bioindicator species of pollution in coral reef health assessments. Pollution indicators were assessed through the analysis of water samples, concentrating on the levels of ammonia, nitrate, nitrite and phosphate, sediment levels, and fecal contamination. To allow for comparison between differing levels of water pollution, six different sites were chosen with various levels of expected pollution impact by their proximity to resorts. Abundance of S. giganteus and coral reef cover at these sites were analyzed through transects at different depths. No significance was found between S. giganteus density and nutrient levels or fecal contamination. This study found a significant positive correlation (r² = 0.936) between S. giganteus density and sedimentation rates, suggesting the possible use of S. giganteus as a bioindicator of sedimentation_stress_on_coral_reefs.

This student research was retrieved from Physis: Journal of Marine Science IX (Spring 2011)19: 20-30 from CIEE Bonaire.

Date
2011
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Author

Bioaccumulation of run-off pollutants: An evaluation of marine sponges as bioindicators

Runoff and sewage discharge present serious consequences if left unchecked in coral reef ecosystems. Eutrophication and the introduction of harmful chemicals to the environment can lead to the destruction of coral reefs. Phosphates and polycyclic aromatic hydrocarbons (PAHs) are well known components of runoff that are detrimental to the reef ecosystem. As such, the ability to monitor the concentration and spatial distribution of these chemicals is of great interest. These pollutants may be detected using bioindicators. Bioindicators are organisms that can be used to monitor the health of an ecosystem. In this study, sponges were assessed as bioindicators for phosphate and PAHs in coral reef environments. Holopsamma helwigi, Ircinia strobilina, and Pseudoceratina crassa are common Leuconoid sponges that were tested for pollutant contaminations using fluorometric analysis. The sponges were collected along a transect spanning the northern coast of Kralendijk, Bonaire. A known runoff site at ‘Kas di Arte’ (12° 9' 19.9362" N, 68° 16' 44.5434" W) was selected as the starting point for the transect. The sponges bioaccumulated both phosphates and PAH compounds. Concentrations of the pollutants were not found to decrease as the distance from the runoff site increased suggesting that sponges assessed here are not capable of showing short-term variation in spatial trends of pollutant concentration. In order to better understand how the sponges accumulate pollutants, a thorough exploration of the kinetics of pollution bioaccumulation should be pursued in future studies.

This student research was retrieved from Physis: Journal of Marine Science XV (Spring 2014)19: 45-51 from CIEE Bonaire.

Date
2014
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Author

Eutrophication threatens Caribbean seagrasses – An example from Curaçao and Bonaire

Seagrass beds are globally declining due to human activities in coastal areas. We here aimed to identify threats from eutrophication to the valuable seagrass beds of Curaçao and Bonaire in the Caribbean, which function as nursery habitats for commercial fish species. We documented surface- and porewater nutrient concentrations, and seagrass nutrient concentrations in 6 bays varying in nutrient loads. Water measurements only provided a momentary snapshot, due to timing, tidal stage, etc., but Thalassia testudinum nutrient concentrations indicated long-term nutrient loads. Nutrient levels in most bays did not raise any concern, but high leaf % P values of Thalassia in Piscadera Bay (0.31%) and Spanish Water Bay (0.21%) showed that seagrasses may be threatened by eutrophication, due to emergency overflow of waste water and coastal housing. We thus showed that seagrasses may be threatened and measures should be taken to prevent loss of these important nursery areas due to eutrophication.

 

 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
Curacao