Acroporidae

Corals Chemically Cue Mutualistic Fishes to Remove Competing Seaweeds

Corals in the genus Acropora generate much of the structural complexity upon which coral reefs depend, but they are susceptible to damage from toxic seaweeds. Acropora nasuta minimizes this damage by chemically cuing symbiotic goby fishes (Gobiodon histrio or Paragobiodon echinocephalus) to remove the toxic seaweed Chlorodesmis fastigiata. Within minutes of seaweed contact, or contact from only seaweed chemical extract, the coral releases an odor that recruits gobies to trim the seaweed and dramatically reduce coral damage that would otherwise occur. In turn, chemically defended gobies become more toxic after consumption of this noxious alga. Mutualistic gobies and corals appear to represent a marine parallel to terrestrial ant-plants, in that the host provides shelter and food in return for protection from natural enemies

Date
2012
Data type
Scientific article
Theme
Research and monitoring
Journal

Coral growth rates revisited after 31 years: What is causing lower extension rates in Acropora palmata?

Linear extension of branches in the same Acropora palmata (Lamarck, 1816) population in Curaçao was measured, employing exactly the same methods, in 1971–1973 and in 2002–2004, and the resulting coral growth rates are compared. Linear growth shows the same pattern over seasons in both periods with growth being significantly higher in summer than in winter. Growth in the 2002–2004 time interval was significantly slower than in 1971–1973. Mean monthly growth ranged from 0.69 cm (winter) to 0.81 cm (summer) in 1971–1973 and from 0.62 cm (winter) to 0.75 cm (summer) in 2002–2004. This means that linear growth rates in 2002–2004 were 7.2% lower in summer and 10.7% lower in winter compared with 1971–1973. Considering possible causative environmental factors relating to these decreases in growth rate, we cannot preclude the possibility that a change in ocean pH could be responsible for the drop in extension rate.

Date
2009
Data type
Scientific article
Theme
Research and monitoring

Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata

Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO2. Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO2 levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO2 increases that are expected to occur in this century [∼560 μatm (mid-CO2) and ∼800 μatm (high-CO2)]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO2, and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO2 conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO2) and 50% (high-CO2) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance

Date
2010
Data type
Scientific article
Theme
Research and monitoring