
Geophys. J. Int. (2018) 214, 687–703 doi: 10.1093/gji/ggy175
Advance Access publication 2018 May 03
GJI Marine geosciences and applied geophysics

Resolving carbonate platform geometries on the Island of Bonaire,
Caribbean Netherlands through semi-automatic GPR facies
classification

R.D. Bowling, J.C. Laya and M.E. Everett
Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA. E-mail: rbowling42@tamu.edu

Accepted 2018 May 1. Received 2018 April 10; in original form 2017 December 18

S U M M A R Y
The study of exposed carbonate platforms provides observational constraints on regional tec-
tonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe
Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean.
Ground penetrating radar (GPR) was used to probe near-surface structural geometries asso-
ciated with these lithologies. The single cross-island transect described herein allowed for
continuous mapping of geologic structures on kilometre length scales. Numerical analysis was
applied to the data in the form of k-means clustering of structure-parallel vectors derived from
image structure tensors. This methodology enables radar facies along the survey transect to be
semi-automatically mapped. The results provide subsurface evidence to support previous sur-
ficial and outcrop observations, and reveal complex stratigraphy within the platform. From the
GPR data analysis, progradational clinoform geometries were observed on the northeast side
of the island which support the tectonics and depositional trends of the region. Furthermore,
several leeward-side radar facies are identified which correlate to environments of deposition
conducive to dolomitization via reflux mechanisms.

Key words: Ground penetrating radar; Image processing; Sedimentary basin processes;
Persistence, memory, correlations, clustering.

1 I N T RO D U C T I O N

The variety of carbonate deposits around the globe has provided an
endless source of research topics in sedimentology and stratigraphy,
including depositional history, platform geometry, geochemistry,
etc. (Eberli & Ginsburg 1989; Kenter 1990; Read 1995; Mutti et al.
1997; Pomar 2001; Brandano & Corda 2002; Della Porta et al.
2004). Given that the origins of carbonate rocks are directly tied to
past ocean conditions (James & Jones 2016), a better understanding
of how they form can provide important information about sea-
level history, paleoclimate, as well as regional tectonics. However,
most of the previous studies have taken place in areas that have
been in tectonically stable (e.g. The Bahamas) with a single control,
such as sea-level history, determining depositional or stratigraphic
architecture. Few of the previously studied platforms record the
interaction of both eustacy and tectonic evolution (e.g. Barbados,
Dominican Republic and Jamaica).

In the southern Caribbean, the island of Bonaire presents a spec-
tacular set of exposures that make this area an ideal location to
understand complex controls including sea-level history, climate
and tectonic relationships, based on geometrical features. The pri-
mary purpose of this paper is to investigate how such controls have

shaped the island’s present-day carbonate morphology and strati-
graphic geometries. This is important for understanding the history
and evolution of Caribbean region at large, including allogenic con-
trols on carbonate deposits.

Many authors have described terraced morphology on Bonaire
and the surrounding ABC (Aruba, Bonaire and Curacao) islands
(Alexander 1961; de Buisonjé, 1964, 1974; Bandoian & Murray
1974; Schellmann et al. 2004; Muhs et al. 2012). This morphology
is the product of exposure, marine erosion and depositional episodes
that have not been extensively studied on the island. Recent research
(Laya et al. 2018) suggests that the terraces on the island are less sig-
nificant to the stratigraphy than has been pointed out before. Instead,
we focus on examining the internal architecture of the strata and re-
gional trends through the use of ground penetrating radar (GPR) to
provide more relevant information about depositional episodes. In
particular, this study examines more closely the various geometries
and stratigraphic architecture of the Seroe Domi Formation, which
describes a period of carbonate progradation on the island (Laya
et al. 2018).

GPR has been successfully used to provide high-resolution near-
surface imaging of carbonate formations (Martinez et al. 1998;
Asprion & Aigner 2000; Asprion et al. 2009; Jorry & Biévre 2011;
Forte et al. 2012; Menezes et al. 2016). Reflections observed in
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GPR data have been shown to correlate with observable features
in carbonates at the outcrop-scale (Martinez et al. 1998; Jorry &
Biévre 2011). GPR has particular utility in determining subsurface
information in regions where little to no outcrop evidence exists.
In this study we extend the use of GPR in carbonates to image
subsurface geologic structures over km-scale distances on Bonaire.
Numerical techniques, which involve a detailed identification of the
structural trends implied by the GPR data, are herein utilized to
provide semi-automatic classification of radar facies utilized in ge-
ologic interpretation. This study takes advantage of the high resolu-
tion (submetre) nature of GPR data to describe individual structures
that are laterally continuous on the order of 10s of m. The GPR data
set used in this study represents one of a very few geophysical data
sets collected on Bonaire (e.g. de Kleine & Bakker 2009) and, to
our knowledge, is the first one aimed specifically at furthering the
understanding of the overall geological evolution of the island.

2 G E O G R A P H I C A N D G E O L O G I C
S E T T I N G

The island of Bonaire is located in the Southern Caribbean as part of
the Leeward Antilles islands. Formerly part of the Netherlands An-
tilles, Bonaire is now a special municipality within the Netherlands.
The island is located approximately 90 km north of the Venezuelan
coast, and consequently is infrequently affected by severe tropical
storms or hurricanes seen farther northwest in the Caribbean (Lugo
et al. 2000). Moreover, the island is quite arid with the mean yearly
rainfall being on the order of 500 mm (Stoffers 1956).

Geologically, the island is composed of a Cretaceous volcanic
basement overlain by Neogene to Holocene carbonate rocks and
sediments (de Buisonjé 1974; Laya et al. 2018). The basement has
been attributed to volcanism resulting from the shallow subduction
of the Caribbean plate beneath the South American plate that cre-
ated the South Caribbean deformed belt and the Leeward Antilles
ridge (Van der Hilst & Mann 1994; Hippolyte & Mann 2011). Uplift
and erosion caused deposition of clastic sediments on the volcanic
slopes, with consistent deposition through carbonate production
systems beginning sometime in the middle Eocene (Pijpers 1933;
Bandoian & Murray 1974; de Buisonjé 1974). The Miocene through
Pliocene saw the deposition of extensive carbonate units, collec-
tively called the Seroe Domi Formation, across Bonaire (Fig. 1a)
and its neighbouring islands, Aruba and Curaçao. Continued tec-
tonic activity along the Caribbean–South American plate boundary
has caused uplift of the island of Bonaire, resulting in prograda-
tion and subsequent exposure of the Seroe Domi Formation, as well
as younger Pleistocene carbonate successions comprised of reefal
platforms (Alexander 1961; Bandoian & Murray 1974; de Buisonjé
1974; Laya et al. 2018). Today, a significant majority of the island
is covered by these carbonate units (Fig. 1a) with isolated outcrops
of older conglomerates and volcanic rocks (Westermann & Zon-
neveld 1956; de Buisonjé 1974). At the southern end of Bonaire,
active sedimentation is taking place in the hypersaline lagoon of
Pekelmeer and in the bioclastic embayment called Lac Bay (Fig. 1a;
Deffeyes et al. 1964; Lucia 1968).

3 G P R M E T H O D

3.1 Background

GPR is an active-source geophysical method in which a pulsed
electromagnetic (EM) wave is radiated from a transmitting antenna

(TX) and propagates through the subsurface. Some of the propagat-
ing energy is reflected at interfaces characterized by a contrast in
EM impedance Z = √

μ/ε , where μ is the absolute magnetic sus-
ceptibility and ε is the absolute dielectric permittivity. The absolute
permittivity can be written as ε = ε0 εr where ε0 is the permittivity
of free space and εr is the relative permittivity of the subsurface
materials. The amount of energy that is reflected is proportional to
the contrast in

√
ε across the interface (Davis & Annan 1989). As

the reflected energy propagates back towards the surface, a small
fraction of it arriving at a receiving antenna (RX) is recorded. The
reflected energy is stored as a digital signal trace indicating induced
RX-voltage versus time. Side-by-side layout of such digital signal
traces collected along a profile displays the GPR response of the
subsurface. For a more comprehensive review of EM waves, the
reader is directed to Griffiths (1999), while Annan (2009) provides
a detailed description of the GPR method.

The spatial resolution of a GPR survey depends on many factors
but especially the frequency content of the radiated signal, with
higher frequencies generally offering finer resolution (Annan 2003).
The depth of investigation is also related to operating frequency
(Smith & Jol 1995), and the electrical properties of the subsurface
(Davis & Annan 1989). The attenuation α (dB m−1),

α = ω

[
εμ

2

(√
1 +

( σ

εω

)2
− 1

)]1/2
, (1)

where ω is angular frequency and σ is electrical conductivity, de-
scribes the amplitude loss of an EM plane wave (Griffiths 1999).
This plane wave is a good representation of the spatial component
of a GPR signal at sufficiently large range. Attenuation is approx-
imately proportional to both frequency and conductivity (Annan
1973; Bradford 2007). The inverse of attenuation is skin-depth, δ,
the depth at which the amplitude of a propagating plane EM wave
has decreased by a factor of 1/e (where e is Euler’s constant, i.e.
∼2.718), from its value at the surface (Reynolds 1997).

Limestones, such as those found on Bonaire, are relatively poor
conductors with σ = 5×10−4–0.002 S m−1 whereas clays are good
conductors with σ = 0.002–1 S m−1 (Davis & Annan 1989). Us-
ing these values, skin-depths can be computed for GPR signals at
100 MHz, assigning μ = μ0, along with εr = 4–8 for limestone
and εr = 4–50 for clay (Davis & Annan 1989). For these ranges
of conductivity and relative permittivity, the geometric mean for
skin-depth in limestones is 13 m, while for clays it is only 0.6 m.
Thus, limestones cause less attenuation of GPR signals than clays,
resulting in deeper signal penetration. Furthermore, arid conditions,
such as those of Bonaire, ensure that pore-water content of rocks is
low. GPR signals are attenuated in the presence of water-dissolved
ions, mainly salts, since they increase bulk electrical conductivity
(Annan 1996). Low water content further mitigates the effects of
attenuation due to pore-water salinity during GPR acquisition.

3.2 Cross-island transect survey

The cross-island transect (CIT), completed between 2015 July 25
and August 1, was performed along a 3900-m segment of a bike trail
that spans nearly the entire width of the island (Fig. 1a). The location
of the CIT-enabled subsurface imaging of both leeward and wind-
ward portions of the Seroe Domi Formation since it crosses both.
Common-offset acquisition was utilized during the survey. This
technique maintains the TX and RX antennas at a fixed distance
apart and records a single trace at each station along the transect
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Figure 1. Map of Bonaire. (a) Generalized geologic map of Bonaire, modified after Laya et al. (2018). Blue line indicates location of survey site. (b) Elevation
profile of cross-island transect. Elevations derived from Shuttle Radar Topography Mission data (Farr et al. 2007).

(Annan 2003). The signal-to-noise (SNR) ratio can be increased in
this acquisition mode through stacking of traces. The survey was
completed using the PulseEKKO PRO GPR system from Sensors
and Software using 100 MHz bistatic antennas and a 1000 V trans-
mitter unit. The TX-RX antenna offset was 1 m with a trace (station)
spacing of 20 cm along the transect. A signal sampling interval of
0.4 ns per sample was used with a trace-window of 600 ns two-way
traveltime. A stack number of 16 was chosen to improve the SNR
while keeping the total acquisition time to an acceptable level. Ab-
solute position information was sparsely collected along the CIT
using a GPS unit, and was combined with satellite imagery of the
bike trail region to extract a topographic profile for the CIT from the

Shuttle Radar Topography Mission (SRTM; Farr et al. 2007) data
set (1 arc s, ∼30 m lateral resolution).

4 DATA P RO C E S S I N G

Processing of the GPR data followed the steps (1–8) outlined be-
low. Some of the processing techniques were implemented in code
written specifically for this study by the first author using MAT-
LAB, while others, where mentioned, utilize the commercial pack-
age EKKO Project (Sensors & Software Inc. 2016). The processing
workflow was as follows (Table 1):
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Table 1. Outline of GPR data processing workflow, including processing parameters.

Step Process Parameters

(1) Segment concatenationa N/A
(2) First-break alignmentb Threshold set to 5 per cent of maximum amplitude
(3) Time-zero to first-break cropb t = 0 ns to first-break
(4) De-wowb Filter length set to 1.33 × pulse width
(5) Background subtractionb Filter shape: Nuttall-defined Blackman Harris

Window
Filter width: 250 traces = 50 m

(6) Frequency filteringb Low-cut: 15 MHz Low-pass: 45 Hz
High-pass: 155 MHz High-cut: 185 MHz

(7) Kirchhoff topographic migrationa Migration velocity: 0.1 m ns−1

Topographic data: SRTMc derived
(8) Power-law gaina Gain function: g (t) = αtβ + 1

α = 1, β = 2, time-window = 0–300 ns
AGC gaina AGC window = 7 samples, maximum scalar

gain = 100, time window = 0–300 ns
aMATLAB implementation.
b EKKO Project routine (Sensors & Software Inc. 2016).
c Shuttle Radar Topography Mission (Farr et al. 2007).

(1) Segment concatenation was first applied to merge into one
contiguous file the entire GPR profile that was originally collected
in segments defined by pauses in acquisition.

(2) First-break alignment (Cassidy 2009) was then applied to
automatically detect the onset of recorded EM energy for all traces
and individually shift them in time to correspond with a reference
time. This operation was applied using the EKKO Project software,
and corrects for instrument timing issues and the effect of small
terrain irregularities on antenna placement.

(3) The delay between time-zero (the time at which the RX be-
gins recording) and the first-break was then muted and time-zero
reassigned to the first-break time. This delay corresponds to the
traveltime of the direct wave from the TX to the RX. With the as-
sumption of a constant subsurface EM wave velocity, the removal
of this delay accounts for the offset between the TX and RX, effec-
tively creating a zero-offset section, although it does not remove the
ubiquitous ground-clutter.

(4) Using the EKKO Project software, the data were ‘de-wowed’.
This step removes the low-frequency bias in each of the traces due
to either inductive coupling of the TX–RX (Annan, 2003, 2009) or
amplitude saturation of the electronics by the direct wave (Gerlitz
et al. 1993).

(5) A lateral (across-trace) moving weighted-average was then
used as a background subtraction filter (Table 1). This filter removes
the high-amplitude direct wave that can mask early-time reflections,
and also reduces the effects of antenna ringing (Everett 2013).

(6) Frequency filtering was then performed to mitigate recorded
signals occurring outside the −3 dB roll-off defining the bandwidth
(50–150 MHz) of the antennas used in this study. An appropriate
bandpass filter was designed using EKKO Project (Table 1).

(7) A topographic Kirchhoff migration (Dujardin & Bano 2013)
was implemented for the purpose of collapsing diffraction hyper-
bolae and restoring dipping reflections to their true spatial locations
(Claerbout 1985; Yilmaz 2001). The benefit of topographic migra-
tion is that the relative vertical position of the GPR acquisition
system is taken into account without the need for a separate to-
pographic correction step. Moreover, as relative elevation changes
along the GPR transects are on the same scale as the depths of in-
vestigation, topographic migration provides more accurate imaging
than topographic correction, followed by a fixed-datum migration
(Lehmann et al. 1998; Dujardin & Bano 2013). The STRM-derived

elevation profile of the CIT was interpolated to the 0.2 m GPR
trace spacing and provided as an input to the topographic migration
algorithm.
Previous studies utilizing GPR in limestone lithologies have shown
insignificant variation in average velocity with depth (Forte et al.
2012; Menezes et al. 2016) and little improvement to imaging from
using more complex velocity models. Therefore, iterative constant
velocity migration attempts were made at multiple locations along
the CIT (one example test location is shown in Fig. 2). During vi-
sual inspection of these migration test results, a constant 0.1 m ns−1

velocity model consistently proved to best collapse observed diffrac-
tion hyperbolae at each test location. (Figs2c and d).

(8) Gain was applied to the GPR lines to compensate for geomet-
rical spreading (Yilmaz 2001) and other forms of attenuation. Two
gain functions were applied independently (not consecutively) to the
data. The first was a t2 power-law gain (Claerbout 1985) wherein
amplitudes are scaled according to the square of their traveltime.
This gain compensates for the effects of geometrical spreading
while retaining the relative amplitude, both along a given trace and
between traces. The second gain was an Automatic Gain Control
(AGC) function that seeks to gain each recorded sample based on
the average amplitude of a surrounding window compared to the
maximum amplitude occurring in the ungained trace. The bene-
fit of the AGC gain is to normalize the amplitudes of reflections
within the gain application window. This improves the continuity
of reflections and facilitates structural interpretation. However, the
relative amplitude information of the data is not preserved in the
AGC process. To avoid overamplification of signals below the noise
threshold, a maximum allowable gain was set when applying the
AGC. Both the attenuation and AGC gains were not applied beyond
300 ns in each trace to avoid amplification of artefacts below the
depth of investigation.

5 S E M I - AU T O M AT I C C L A S S I F I C AT I O N
O F G P R DATA

The CIT survey spanned 3900 m with traces every 20 cm, giv-
ing 19 500 traces. With each trace in the data set consisting of
1500 samples, the entire CIT contains over 29 million individual
amplitude measurements. It is advantageous to interpret such a
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Figure 2. Topographic correction but no migration (top panels) versus topographic migration (bottom panels) at x = 80–120 m along CIT. (a and b)
v = 0.9 × 108 m s−1, (c and d) v = 1.0 × 108 m s−1 and (e and f) v = 1.1 × 108 m s−1. Ovals indicate diffractions of interest. Power-law gain applied to all
radargrams.

high resolution data set efficiently while, at the same time, main-
taining objectivity and consistency. Traditional manual methods of
observation and interpretation provide a subjective, and often time
consuming approach to identification of features such as radar fa-
cies (Neal 2004) and individual geologic structures. To increase
the confidence in interpretation along the CIT, and to provide a
more quantitative approach to interpretation, a method of k-means
clustering of structure-parallel vectors was developed. This method
automatically segments a GPR image based on the local orientation
of reflections.

5.1 k-means clustering of structure parallel vectors

In its simplest form, k-means is a method for organizing a set of
N vectors into k groups. This process was discussed by MacQueen
(1967) as a method for partitioning data into groups that have low
within-group variance and consequently higher intragroup variance.
The k-means algorithm compares each vector comprising a data set
to the average, or mean, values of non-overlapping subsets of data
belonging to a specified number of clusters. A more detailed de-
scription of the traditional k-means algorithm (after Steinley 2006)
is provided in the Appendix.

In clustering of images, each vector in the data set usually corre-
sponds to an attribute of an individual pixel in the image. Popular
definitions for these vectors are pixel colour, measures of intensity
or texture (Jain et al. 1999; Jain 2010). Instead of such metrics,
the method implemented for this study utilizes neighbourhoods of
structure-parallel vectors (Hale 2009), associated with each pixel in
a GPR image (see the Appendix).

A structure-parallel vector is derived from an image structure
tensor (Hale 2009) that is the smoothed outer product (∇u∇uT )

of the image gradient (∇u(x, y)) with itself (Van Vliet & Verbeek
1995; Weickert 1995; Fehmers & Höcker 2003; Hale 2009). For
GPR images, u(x, y) is the amplitude of the individual pixel at
location (x, y). In this study, image gradients were computed using
Gaussian derivative filters with radii σ = 1 pixel and outer products
were smoothed using Gaussian smoothing filters with radii σ = 10
pixels (with the spatial scale of 1 pixel in the CIT GPR image being
0.2 × 0.02 m). The size of the smoothing radius was chosen in order
to eliminate the influence of fine-scale irregularities in the image
while preserving geometries representative of geologic structures
(Bowling 2017).

Computation of a structure-parallel vector begins with the eigen-
decomposition of a structure tensor S,

S = λu uuT + λvvvT , (2)

where u and v are the eigenvectors and λu and λv are the eigenvalues
defined with λu ≥ λv ≥ 0 (Hale 2009). It can be shown that the
eigenvectors of S are orthonormal (uT u = vT v = 1; Weickert
1995) with u pointing in the direction of maximum image gradient
and v pointing in the direction of minimum image gradient (Van
Vliet & Verbeek 1995; Hale 2009).

For GPR images, gradients in signal amplitude are generally
highest in the direction perpendicular to reflections within the im-
age and lowest paralleling reflections. Given that these reflections
define the structural geometries of the image (and potentially the
geology of interest), for a structure tensor S, the eigenvector v can
be described as a structure-parallel vector with u being a structure-
perpendicular vector. An example of a subset of structure-parallel
vectors computed from a portion of the CIT is shown in Fig. 3(a).
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Figure 3. (a) A subset of structure-parallel vectors (every fourth in x and every eighth in y) overlain atop a portion of the CIT survey. Axes are labelled in
pixels. Red box indicates size of 51 × 51 vector patch. (b) Visual diagram of an example 3 × 3 patch of structure-parallel vectors, X, centred on vector x 22
indicated by grey box.

The lengths of all structure-parallel vectors computed in this
study have been scaled by the linearity, λ1, of the associated struc-
ture tensor. Using the notation after Hale (2009) , the linearity is
defined as

λ1 (x, y) = (λu − λv/λu) . (3)

Orientations described by structure tensors with high linearities
are comparatively more consistent (Van Vliet & Verbeek 1995),
and well defined. In a GPR image, higher linearities correspond to
sharper reflections, and the scaling of structure-parallel vectors by
linearity serves to emphasize such features in the clustering.

A structure-parallel vector computed from amplitudes at a given
GPR image point describes the linear orientation of a reflection av-
eraged over the radius of smoothing (here 10 pixels). Yet geologic
features that are of interest to this study, such as clinoforms, karstic
features, gradational changes in dipping beds, etc., may contain
multiple orientations over their spatial extent. Therefore, instead of
performing k-means clustering through observation of each indi-
vidual vector in the structure-parallel vector field, instead patches
of vectors are compared (see the Appendix; Fig. 3b). A patch size
of 51 × 51 structure-parallel vectors (approximately 1 × 10 m in
vertical and horizontal extent, respectively) was selected for use as
the basis of clustering the CIT. This patch size allowed for features
at the scale of interest in this study to be compared, while features at

significantly smaller scales than the patch (red rectangle in Fig. 3a)
were given less importance in the clustering (Bowling 2017).

In this method, the number of clusters, k, chosen in the k-means
algorithm serves as a way to choose how distinct individual clusters
are from each other (Bowling 2017). For clustering performed on
the CIT, a choice of k = 8 allowed for the best trade-off between
detailed identification of features and structurally distinct clusters.

In any k-means method, initial cluster means must be chosen
(Steinley 2006). In this work, initial cluster means were manually
chosen to correspond with regions in the CIT that appear to be
structurally different from one another. The use of user-defined
means prevented overdetermination of clusters (Bowling 2017), and
allowed for prior knowledge of significant features in the image to
be included in the clustering.

5.2 CIT clustering results

Using the methodology outlined above and described in the Ap-
pendix, k-means clustering of structure-parallel vectors was per-
formed on the full CIT (Fig. 4). Given that structure-parallel vec-
tors are sensitive to local changes in gradient, relative amplitude
changes along a reflector will affect their orientation. However,
when the GPR data are AGC gained, relative amplitudes are re-
moved and only the structural aspects of the reflections remain.
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Figure 4. Results of k-means clustering of structure-parallel vectors applied to the CIT. (a) Full CIT with clustering results semi-transparently overlain on
AGC-gained radar amplitudes. Coloured diamonds represent locations where initial means were chosen. (b) Close up of clustering results for x = 200–600 m.
(c) Close up of clustering results for x = 1912.6–2312.6.

Therefore, clustering in this study was performed after application
of AGC to the CIT. This choice simplified further analysis as inter-
pretations of the clustering are not influenced by relative amplitude
information. To quantify the orientations of vectors classified into
each cluster, dip-histograms were created. These plots (Figs 5a–h)
show that for each cluster, the number of structure-parallel vectors
falling within a bin represent a given range of dips. The dips in
these histograms represent actual apparent dips as the length of
each vector component was converted from pixels to metres prior to
the dip calculation. In addition to binning the vectors by dip, each
bin was then colour-coded according to the average linearity of the
vectors in that bin. Recall that each structure-parallel vector was
scaled by the linearity parameter, λ1, which ranges from 0 to 1.
Vectors with larger associated values of linearity describe features
that produce larger image gradients and therefore define regions
with more distinct local orientations.

The results of the k-means algorithm show that clusters 1, 2 and
7 classify regions in the image that are not associated specifically
with GPR reflections. Cluster 1 classifies the zero amplitude regions
in the image that bound the GPR data. Clusters 2 and 7 classify the
upper and lower edges of the GPR traces, respectively. Each of
these clusters contains vectors that largely have zero dips and zero
values of linearity (Figs 5a, b and g). This indicates that the features
associated with these clusters either produce no image gradients (as
in the case of cluster 1) or transition from high-gradients to zero
gradients (clusters 2 and 7).

The remaining clusters (3–6 and 8) each identify features asso-
ciated with structural aspects of the GPR reflections in the CIT.
Cluster 3 classifies relatively low-angle, southwest dipping reflec-
tions in the CIT with structure-parallel vector dips between 5◦ and
90◦ (Fig. 5c). Cluster 4 contains reflectors that are more steeply
dipping to the southwest than those in cluster 3. The dip histogram
in Fig. 5(d) for this cluster shows that dips are distributed between
20◦ and 60◦. Cluster 5 identifies reflections that are dipping steeply
to the northeast. The vectors in cluster 5 have dips falling between

20◦ and 60◦. Although these dips generally mirror the range of dips
defined by cluster 4, the dip distribution of cluster 5 is broader and
encompasses dips that are up to 90◦. Furthermore, cluster 5 shows
a bimodal distribution for vectors with high linearities (Fig. 5e).
Cluster 6 classifies GPR reflections that are near-horizontal com-
pared to surrounding reflections. The dip-histogram for cluster 6
(Fig. 5f) shows that the majority of the vectors in this cluster have
dips less than 10◦. Cluster 8 contains vectors associated with com-
paratively low-angle northeast dipping reflections. Cluster 8 shows
the narrowest distribution of vector dips for any cluster within the
CIT, with the majority of dips ranging from 10◦–35◦ (Fig. 5h).

The linearity values can be seen to vary significantly between
the clusters (Fig. 5). Clusters 4 and 5 have a larger proportion
of their vectors with high linearities (λ1 ≥0.87), as compared to
clusters 3, 6 and 8. This indicates that features associated with
clusters 4 and 5 produce high gradients, meaning they contain sharp,
clear reflections, in the CIT. Reflections associated with these two
clusters are higher in frequency compared to reflections associated
with clusters 3, 6 and 8 (Fig. 6). The broader wavelets of the low-
frequency reflections result in the lower linearities associated with
vectors in clusters 3, 6 and 8 versus clusters 4 and 5.

It is important to note that many of the vectors within cluster
6 have very low linearities compared to the other clusters (rarely
exceeding λ1 = 0.74). This is likely due to the fact that the majority
of vectors in this cluster are found near the bottom edge of the GPR
data, with few residing within the GPR reflections themselves. At
the bottom of the data, the low-amplitude migration artefacts char-
acterized by very broad semi-ellipse shapes exhibit near-horizontal
orientations and consequently are classified by cluster 6. Despite
much of cluster 6 identifying these migration artefacts, there exits
several regions within the GPR reflections where actual horizontal
reflections are well classified by cluster 6 (Figs 4c and 6), therefore
making this cluster important when considering geologic interpre-
tation of the CIT.
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Figure 5. Dip histograms for each cluster, indicating vector dips and average linearity by 5◦ bins. (a–h) Dip histograms for clusters 1–8, respectively.

Many of the clustering results are intuitive when considering the
initial mean assignments for the clusters (Fig. 4). However, some
non-intuitive results exist. The final assignments of cluster 7 may
appear surprising when considering the initial mean for cluster 7
was chosen in a region with well-defined GPR reflections (Fig. 4c).
We observed that the relatively flat-lying reflections at the loca-
tion of the initial mean for cluster 7 produced structure-parallel
vectors that were similar to those produced at the location of the
initial mean chosen for cluster 6 (broad semi-ellipse shapes). With
two similarly initialized means, the k-means algorithm began by at-
tributing such features to either cluster before successive iterations
better differentiated the two groups. This observation illustrates that
while the results of k-means clustering of structure parallel vectors
is influenced by the initial means, the relative influence of the actual
proportions of features in the image ultimately determines which
regions in the image will be associated with what clusters (Bowling
2017).

5.3 CIT radar facies derived from clustering results

From the results of the k-means clustering, the clusters (3, 4, 5, 6
and 8) that are associated with the informative parts of the GPR
image, that is, radar reflections, were used to describe a set of radar
facies (Neal 2004). However, each individual cluster does not fully
describe a unique radar facies. The clusters have been shown to
identify reflections that fall within a specific range of orientations,
yet geologic structures as described by radar facies may contain
multiple orientations over their extent. Therefore, combinations of
clustering assignments were considered when determining radar
facies. Moreover, the clustering assignments do not take into ac-
count reflector amplitude. Using the CIT with the application of the
power-law gain as described in section 4, relative amplitude varia-
tions along reflections aided in determining radar facies. With these
considerations, six radar facies (R1–R6) were identified within the
CIT. Descriptions of the various facies include information about re-
flection dip, amplitude, shape and relationships between reflections.
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Resolving carbonate platform geometries 695

Figure 6. Radar facies summary with descriptions of each of the six radar facies identified in the CIT along with the clusters that define the geometries of the
facies. Examples are shown for the clustering results, power-law gained radar amplitudes and resulting line-drawing for each of the radar facies types.

Reflection shape and relationships between reflections are described
using terminology from seismic stratigraphic analysis (Mitchum Jr
et al. 1977; Vail 1987). Each of the radar facies is described in detail
below, and a summary of these descriptions, along with examples
of each facies is shown in Fig. 6.

R1–The reflections in this radar facies are typically parallel to
subparallel with largely shallow dips to the southwest and often
contain small-scale hummocky irregularities. The more continuous
reflections in this facies are generally low frequency and have high
amplitude. R1 is primarily characterized by clusters 3, 4 and 8. Re-
flections with low-angle (<10 degrees) southwest dips are classified
by cluster 3, areas of flat to northeast dips are classified by cluster
8 and the more complex areas with locally steep dips are classified
by cluster 4. Within these, small patches of complex reflections
showing steep northeast dips are classified by cluster 5. Cluster 5 is
deemed a subordinate or ‘associated’ cluster because it often occurs
within the radar facies as a minor constituent of isolated features.

R2–This facies contain narrow, mostly subparallel to oblique,
high amplitude reflections that are steeply dipping to the southwest.
From the k-means clustering results, the more continuous reflectors
in R2 are classified by cluster 4. Small patches of discontinuous
reflections with southwest dips classified by cluster 5 also exist
within this facies. These more complex regions have comparatively

lower amplitudes than the more continuous reflections in this radar
facies.

R3–This radar facies is composed of generally parallel to sub-
parallel, high-amplitude, horizontal to subhorizontal reflections. As
the dips for this facies are near horizontal, classification by clusters
3, 6 and 8 occurs as each of these clusters classifies horizontal or
near-horizontal dips. Reflections in R5 are broader in width than
surrounding reflections.

R4–Radar facies R4 consists of laterally continuous, very high
amplitude reflections that dip gently to the northeast. These reflec-
tors typically exhibit sigmoidal to subparallel patterns, with some
reflections showing progradational patterns. This facies is mainly
classified by cluster 8 from the k-means clustering, yet where reflec-
tors in this facies are nearly flat lying or dipping slightly southwest,
these portions are classified by cluster 3, and where reflections be-
come more discontinuous and complex, these areas are classified
by cluster 5.

R5–This radar facies characterizes reflections that are generally
moderate in amplitude that often dip steeply to the northeast. Fea-
tures in R3 are significantly more discontinuous than other radar
facies, and include a larger fraction of complex regions. Most of
the reflections in R5 are classified by cluster 5. Although, similar
to R2, isolated patches of low-amplitude reflectors with opposing,
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southwesterly, dips classified by cluster 4 also occur within this
facies.

R6–This facies describes highly discontinuous groups of reflec-
tors of low-to-moderate amplitude having very-high-angle dips. Re-
flections are either classified by cluster 4 or 5 depending on whether
dips are oriented, respectively, towards the southwest or northeast.
Reflections in this facies are parallel to subparallel at scales of less
than 5 m, but appear chaotically organized at larger scales.

6 D I S C U S S I O N

6.1 Strata geometries

Each of the six radar facies was mapped in detail along the CIT,
revealing the strata geometries of the Seroe Domi Formation. A
detailed example of these geometries is shown in Fig. 7 for rep-
resentative portions of radar facies R3 and R4, where the relative
amplitude information of the GPR transect as well as the clustering
results are compared to the facies mapping. A generalized radar
facies mapping across the entire CIT is shown in Fig. 8. This cross-
section summarizes the information derived from the interpreted
radar facies, and also includes locations and corresponding litholo-
gies of hand-drilled core samples previously collected along the
Bonaire bike trail (Sulaica 2015). Fig. 8 shows significant contrasts
in stratigraphic geometries between the windward and leeward sides
of the CIT, which are described herein.

In the southwest portion between 200 and 800 m, transitions
between R1 and R2 are mapped. The low-angle parallel to subpar-
allel orientations of reflections in R1 suggests sediments deposited
in original depositional orientation with a flat foreshore position.
Here, environments would have been relatively low-energy, such
as those dominated by subtidal forces within the protected area of
the leeward side of the island (Tucker & Wright 1990; Lucia 2007;
James & Jones 2016). These types of low-energy environments are
associated with increasing carbonate muds in portions of prograda-
tional platform units (Laya et al. 2017) and may be the source of the
R1 radar reflections. In contrast, the higher angle of the reflections
in R2 compared to R1 implies that sediments may have been de-
posited in areas of relative higher energy, such as foreshore slopes
that were subject to mild wave action (Tucker & Wright 1990; Po-
mar et al. 2015; James & Jones 2016). Radar patterns analogous
to R2 were observed by Jorry & Biévre (2011), which were there
linked to units of bioclastic packstone/grainstones indicating higher
relative energy environments. The alternating packages of R1 and
R2 may represent depositional responses to sea-level fluctuations,
thus creating transitions between shoreface and subtidal deposits
that are preserved on the protected leeward side. Similar radar fa-
cies associations are also seen at ∼1600 m in Fig. 8, indicating that
multiple periods of shoreface transgression and regression may be
preserved on Bonaire.

At the far southeastern portion of the CIT, the higher angle re-
flections described by radar facies R2 (Fig. 8) are possibly caused
by tectonic deformation as opposed to the higher wave energies
previously discussed. The mapping of this facies at the bottom of
the stratigraphy on the southeastern side of the CIT correlates with
observed tectonic deformation of the lower Seroe Domi Formation
(Fig. 1a), as suggested by previous workers (Hippolyte & Mann
2011; Sulacia et al. 2015; Laya et al. 2018).

At the highest portions along the bike trail (2000–2700 m; Fig. 8)
multiple regions of the radar facies R3 were mapped. The low-angle
reflections of this facies (Fig. 6) would initially suggest low-energy

environments of deposition. However, previous workers have de-
scribed sediments with very-well-sorted bioclast fragments (green
triangles in Fig. 8), mainly of benthic foraminifera (Amphistegina
sp.), bryozoans and bivalves, and high-angle cross-bedding derived
from windblown sediments (Bandoian & Murray 1974; de Buisonjé
1974; Sulaica 2015; Laya et al. 2018) occurring at the same loca-
tions were R3 is mapped along the CIT (Figs 7 and 8). With the
estimated vertical resolution for the GPR data in the CIT being on
the order of tens of cm, it is likely that individual high-angle foresets
within these types of sediments are too small to be resolved. Instead,
it is probable that what is being imaged are the lower-order bound-
ing surfaces (Bristow 2009) that have much shallower dips within
sediment packages (Brookfield 1977), resulting in the low-angle
character of R3.

The majority of the northeastern windward portion of the CIT
consists of radar facies R4. The sigmoidal reflector shapes of this
facies are characteristic of clinoforms created from costal fores-
lope deposits (Eberli & Ginsburg 1989; Mutti et al. 1996; Pomar
& Hallock 2008; Hazard et al. 2017). During the depositional stage
creating these units, accommodation space would have been very
limited and would have forced sediments to shed laterally, forming
the geometries of R4 at the platform margin (Schlager et al. 1994).
Occurrences of R4 along the northeastern part of the CIT are compa-
rable to outcrop-interpreted clinoforms, which have been observed
at multiple locations in the northeast part of the island [e.g. outcrop
in Fig. 9 and at Seru Grandi (Laya et al. 2017)]. The geometries
of the clinoforms observed in outcrop (yellow lines, Fig. 9e) com-
pare well with those contained in R4. In addition, outcrops show
near-vertical fractures cross-cutting clinoform traces (black lines,
Fig. 9e). If similar fracture styles occur in the subsurface along the
bike trail, it would account for the sometimes discontinuous nature
of R4. Moreover, the northeast orientation of the clinoforms in R4
supports the idea of eastward-directed regional Caribbean tectonic
movements that influence the local depositional system (Hippolyte
& Mann 2011; Sulaica 2015; Laya et al. 2018).

Beyond the well-defined reflectors described by R1–R4, multiple
locations described by the highly discontinuous reflectors of R5 or
R6 were also mapped along the CIT. These discontinuous reflec-
tions have been attributed to the scattering of EM waves and com-
plex radar returns arising from near-surface karstification caused by
meteoric weathering. The complex reflections defining radar facies
R6 do not appear to have any preferential orientation; therefore,
we describe this facies as unstructured karst. However, the north-
east orientation of many reflections in radar facies R5 do suggest
a preferential orientation of karstification, possibly due to tectonic
deformation (Shanov & Kostov 2015). We hereafter define these
complex and discontinuous features described by R5 as structured
karstification. Karstification, as observed by both R5 and R6, heavily
modifies depositional structures and therefore obscures interpreta-
tion of original geometries.

A large portion of such karst was mapped at ∼1000 m (Fig. 8)
with the structured karstification of R5 being flanked by unstruc-
tured karst (R6). Observations of partly dolomitized rocks occurring
at similar locations (Sulaica 2015; white triangles in Fig. 8) support
the idea of a lagoon where perhaps denser mesohaline waters con-
tributed to dolomitization (Laya et al. 2018). Such a lagoon would
have allowed for the deposition of the observed low-angled strata
(mapped as R4 between 1250 and 1500 m in Fig. 8) bounded by
karstification associated with fossilization of costal corrosive mix-
ing zone areas [a process suggested by Smart et al. (1988) and
Mylroie & Carew (1995)]. Due to the tectonic uplift (Smart et al.
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Figure 7. Radar facies mapping x = 2312.8–2712.8 m. (a) Power-law gained GPR section. Inset map showing location of section with respect to full CIT. (b)
Clustering results with facies boundaries outlined. (c) Cross-section showing radar facies distribution.

Figure 8. Radar facies mapping across CIT. Coloured triangles represent locations and lithologies of hand-drilled core samples from Sulaica (2015).
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Figure 9. R4 compared to outcrop observations. (a) Satellite photo showing location of Bonaire bike trail and respective locations for GPR segment and
outcrop photo. (b) GPR amplitudes along a northeast portion of the CIT. (c) Interpretation of R4 from GPR clustering results. (d) Outcrop photo at location
shown in (a). (e) Interpreted clinoform geometries as well as observed fractures on outcrop photo.

1988), these once submerged structures are 55–65 m above sea level
at the present day.

6.2 Implications for geologic evolution of Bonaire

The identification and interpretation of the radar facies map across
the central portion of Bonaire facilitates a detailed understanding
of the prograding platform within the Seroe Domi Formation. By
examining these lithologies at the 1–10 m scale using GPR, we
were able to identify a complex set of geometries reflecting tectonic,
depositional and diagenetic events defining the geologic evolution
of the island.

The initial deformation and uplifting that was responsible for
tilting the lower Seroe Domi Formation (inclined beds at the west-
ern side of the island) established a basal topography (Hippolyte &
Mann 2011; Laya et al. 2018). We observe some steeply inclined re-
flectors mapped as radar facies R2 that perhaps are associated with
this deformation at the deepest part of the profile (∼0–100 m, Fig. 8).
Prograding platform units were deposited atop these inclined beds
with accommodation space being controlled by the basal topogra-
phy and sea-level highstand conditions (Haq et al. 1987; Fouke et al.
1996; Reijmer et al. 2002; Laya et al. 2018). This forced prograda-
tion of sediments to the east as evidenced by the occurrence of the
sigmoidal clinoform reflections of R4 in the northeast portion of the
CIT. Work by Laya et al. (2018) proposes that grainy deposits of the
prograding platform (high-energy environments) are transitional to
the coastal–continental deposits of the eolianites with an absence
of coral reef facies in the succession. This transition is evident in
the CIT, where radar facies R4 at the northeast portion of the line
transitions to facies R3 in the central portion of the island.

Furthermore, multiple depositional environments are inferred on
the sheltered side of the progradational platform; these are evi-
denced by the complexity of the radar facies occurring on the south-
central portion of the CIT. As mentioned previously, radar facies and

facies associations at these locations suggest shoreface producing
environments, and associated low-energy lagoonal environments,
which can be linked to dolomitization.

6.3 Implications for subsurface mapping of carbonates
using GPR

The utility of GPR to investigate the near-surface structural geolo-
gies across the island of Bonaire depends heavily on the site geology.
As mentioned in section 3.1, the dry carbonate rocks found across
the central portion of Bonaire cause less attenuation of EM waves
than wetter or clay-bearing earth materials. Therefore, signal pen-
etration depths for this study reached upwards of 11 m. Similar
observations regarding optimal conditions for GPR surveying in
carbonates are discussed by Jorry & Biévre (2011), where GPR
was used to image carbonate platform features in the Paris Basin.
However, unlike Jorry & Biévre (2011) and others (Martinez et al.
1998; Asprion & Aigner 2000; Asprion et al. 2009; Menezes et al.
2016) who have dealt mainly with outcrop scale investigations of
carbonates using GPR, this study has successfully extended the use
of GPR to the regional-scale imaging of carbonates.

Logistically, the bike-trail across Bonaire provided unique access
to a 3.9-km transect, something that is not always available in other
field locations. Yet beyond the favourability of the site conditions for
using GPR, the use of quantitative data analysis by means of k-means
clustering of structure-parallel vectors allowed for semi-automatic
determination of radar facies from the CIT survey. Classical studies
have made use of manual tracing of GPR reflection patterns and ge-
ometries for geologic interpretation (Martinez et al. 1998; Asprion
& Aigner 2000; Asprion et al. 2009; Bennett et al. 2009; Jorry &
Biévre 2011; Franke et al. 2015). Such methods may be beneficial
for unambiguous reflection geometries and/or small-scale studies.
However, these methods rely heavily on the skill, judgement and
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prior experience of the interpreter and can be very time consuming
for large data sets.

Measurements of the image texture have been used previously
to provide data-driven interpretations of structural information in
GPR data. A specific example in carbonate geology is the work
by Menezes et al. (2016), where a grey-level cooccurrence matrix
was used as a metric for GPR image texture. Image texture analy-
sis has also been combined with clustering analysis in GPR data.
In an investigative paper, Moysey et al. (2006) examined the use
of many different measures of image texture, including variance,
covariance, Fourier–Mellin transform, R-transform and Principal
Component Analysis, to provide data-driven synthesis of GPR sec-
tions via neural network classification. Yet, such previously used
measures of texture are simply proxies for reflection orientation.
Structure-parallel vectors derived from structure tensors are an at-
tribute that explicitly represents structural geometries of GPR re-
flections. By using structure-parallel vectors in a k-means clustering
algorithm, the structural information from the regional-scale CIT
was synthesized into a few clusters that were intuitively incorporated
into a set of radar facies relating to geologic structures occurring
on Bonaire. Furthermore, each cluster was investigated in terms of
vector dip and vector linearity. Without the use of clustering, tradi-
tional methods of reflection tracing would have been tedious across
the CIT, and reflection orientations within radar facies would not
contain the quantitative information the clustering provides. The
k-means routine used here is intuitive and allows for straightfor-
ward implementation. It also eliminates the need to build training
data sets as would be required in methods such as neural networks.
Structure-parallel attributes of GPR images can be readily utilized in
more sophisticated methods such as fuzzy clustering and hierarchal
clustering (Jain et al. 1999).

The methods used in this study highlight the ability to use GPR
as a primary subsurface investigation tool for carbonate geologic
mapping, even at large scales where high-resolution data sets can
become cumbersome. In cases where large spatial scales are in-
vestigated, it is essential to efficiently synthesize data by means of
methods such as automatic data segmentation or clustering in order
to provide quantitative support for geologic interpretations.

6.4 Limitations of the study

The average depth of investigation for the GPR data along the CIT
is 11 m. An interface between the carbonate platform cover and the
volcanic basement would likely produce a strong reflection in the
data due to the significantly different EM properties of volcanic and
carbonate rocks (Telford et al. 1990; Olhoeft 1998). Since such a
reflector at depth is absent along the whole of the CIT, we infer that
the carbonate-basement contact was not imaged in this study, and
exists deeper than 11 m below the surface. The specific morphology
of this volcanic basement directly influences the carbonate platform
development. Since GPR at 100 MHz is unable to image the base-
ment contact, we suggest magnetic geophysical surveying (Grauch
2002; Wetmore et al. 2009; Robertson et al. 2017) as an appropriate
means to provide new insights into effects that the original geome-
try of volcanic basement may have had on the development of the
carbonate successions on Bonaire.

In addition, while this work has shown the utility that automatic
data segmentation provides to radar facies analysis, the numerical
techniques were unable to automatically classify radar facies in and
of themselves. In this work, a manual interpretation of clusters into
radar facies was still required. As the classification was performed

on the entire GPR data set, it is likely that unwanted migration arte-
facts contributed to the clustering results. This is evidenced by the
presence of a significant amount of lower-linearity vectors in the
cluster-dip distributions (Fig. 4). Also, while the use of the AGC-
gained data set removed unwanted amplitude variations (mainly due
to localized ground-coupling differences) from affecting the clus-
tering results, relative amplitude information of GPR reflections
due to geologic features were not included. This information had
to be manually incorporated into the radar facies analysis (Fig. 6).
Future work in applying the clustering to specific (i.e. artefact-free)
windows of a GPR data set and incorporation of relative ampli-
tude information may bring the results closer to a fully automatic
classification of radar facies.

7 C O N C LU S I O N S

The island of Bonaire contains excellent exposures of carbonate
successions that encode information relating to previous tectonic
and eustatic conditions in the southern Caribbean. Through this
study, we have examined plausible processes and environments of
deposition that have formed the prograding platform units found
on the island. GPR proved to be a useful tool to study the geolog-
ical evolution of Bonaire due to the excellent exposures and the
favourable conditions for signal penetration. Semi-automated fa-
cies classification using image structure tensors derived from the
GPR data facilitated a detailed mapping and interpretation at the
regional scale. Our identification of clearly defined progradational
units occurring on the northeastern windward portion of the island
illustrates a period of reduced accommodation space, thus forcing
lateral shedding of sediments. We further reveal geometries related
to the leeward portion of the platform. These include karstic features
that we have correlated with lithology samples to environments of
deposition conducive to dolimitization, transitional foreshore-to-
shoreface geometries and high-angle beds, which likely correlate
with deformation previously observed in the lower Seroe Domi For-
mation. This study has illustrated the use of GPR as a valuable tool
for platform-scale investigation of carbonate geologies in settings
such as Bonaire, and has provided additional insight into the com-
plex dynamics of carbonate production in the southern Caribbean.
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Jorry, S.J. & Biévre, G., 2011. Integration of sedimentology and ground-
penetrating radar for high-resolution imaging of a carbonate platform,
Sedimentology, 58, 1370–1390.

Laya, J.C. et al., 2018. Controls on neogene carbonate facies and strati-
graphic architecture of an isolated carbonate platform – the Caribbean
island of Bonaire, Mar. Pet. Geol., 94, 1–18.

Laya, J.C., Whitaker, F.F., Tucker, M. & Gabellone, T., 2017. Facies control
on dolomitisation within the neogene succession of Bonaire, Netherlands
Antilles, in AAPG Annual Convention and Exhibition, Houston, TX.

Lehmann, F., Mühll, D.V., van der Veen, M., Wild, P. & Green, A.G., 1998.
True topographic 2-D migration of georadar data, in Symposium on the
Application of Geophysics to Engineering and Environmental Problems
1998, pp. 107–114, Environmental and Engineering Geophysical Society,
doi:10.4133/1.2922491.

Lucia, F.J., 2007. Carbonate Reservoir Characterization, 2nd edn, Springer.
Lucia, F.J., 1968. Recent sediments and diagenesis of South Bonaire, Nether-

lands Antilles, SEPM J. Sediment. Res., 38, 845–858.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/214/1/687/4992313 by guest on 07 July 2023

http://dx.doi.org/10.4133/JEEG1.B.125
http://dx.doi.org/10.1190/1.1440360
http://dx.doi.org/10.1007/BF02562575
http://dx.doi.org/10.1007/s10347-008-0160-6
http://dx.doi.org/10.1130/0016-7606(1974)85\protect $\relax <$1243:PCROBN\protect $\relax >$2.0.CO;2
http://dx.doi.org/10.1016/j.geomorph.2008.08.015
http://dx.doi.org/10.1190/1.2710183
http://dx.doi.org/10.1046/j.1365-3121.2000.00419.x
http://dx.doi.org/10.1111/j.1365-3091.1977.tb00126.x
http://dx.doi.org/10.1111/j.1365-2478.1989.tb02221.x
http://dx.doi.org/10.1126/science.143.3607.678
http://dx.doi.org/10.1016/j.crte.2013.01.003
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1190/1.1598121
http://dx.doi.org/10.1016/j.jappgeo.2011.09.009
http://dx.doi.org/10.1007/BF02536966
http://dx.doi.org/10.1111/sed.12139
http://dx.doi.org/10.1126/science.235.4793.1156
http://dx.doi.org/10.1016/j.marpetgeo.2009.06.010
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1111/j.1365-3091.2010.01213.x
http://dx.doi.org/10.1016/j.marpetgeo.2018.03.031


Resolving carbonate platform geometries 701

Lugo, A.E., Rogers, C.S. & Nixon, S.W., 2000. Hurricanes, coral reefs and
rainforests: resistance, ruin and recovery in the caribbean, AMBIO A J.
Hum. Environ., 29, 106–114.

Kenter, J.A.M., 1990. Carbonate platform flanks: slope angle and sediment
fabric, Sedimentology, 37, 777–794.

MacQueen, J., 1967. Some methods for classification and analysis of multi-
variate observations, in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pp. 281–297, eds Lecam, L.M.
& Neyman, J., University of California Berkeley Press, Oakland, CA.

Martinez, A., Kruger, J.M. & Franseen, E.K., 1998. Utility of ground-
penetrating radar in near-surface, high-resolution imaging of Lansing-
Kansas\s City (Pennsylvanian) limestone reservoir analogs, Kansas Geol.
Surv. Bull., 241, 43–59.

Menezes, P.T.L., Travassos, J.M., Medeiros, M.A.M. & Takayama, P., 2016.
High-resolution facies modeling of presalt lacustrine carbonates reser-
voir analog: morro do chaves formation example, Sergipe-Alagoas Basin,
Brazil, Interpretation, 4, SE63–SE74.

, Mitchum, R.M., Jr., Vail, P.R. & Sangree, J.B., American Association
of Petroleum Geologists, Payton, C.E., 1977. Seismic stratigraphy and
global changes of sea level, part six: stratigraphic interpretation of seismic
reflection patterns in depositional sequences, in Seismic Stratigraphy —
Applications to Hydrocarbon Exploration, pp. 117–134.

Moysey, S., Knight, R.J. & Jol, H.M., 2006. Texture-based classification of
ground-penetrating radar images, Geophysics 71, 111–118.

Muhs, D.R., Pandolfi, J.M., Simmons, K.R. & Schumann, R.R., 2012. Sea-
level history of past interglacial periods from uranium-series dating of
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Figure S1. Topographically migrated cross-island transect, x = 0–
200 m. (a) Power-law-gained data. (b) AGC-gained data. Locator
map in centre showing location of section (red box) in relation
to entire line (cyan line). Vertical exaggeration of sections, 4×.
Vertical exaggeration of locator map, 9.3×.
Figure S2. Topographically migrated cross-island transect,
x = 200.2–600.2 m. (a) Power-law-gained data. (b) AGC-gained
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data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line). Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S3. Topographically migrated cross-island transect,
x = 600.4–1000.4 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S4. Topographically migrated cross-island transect,
x = 712–1112 m. (a) Power-law-gained data. (b) AGC-gained data.
Locator map in centre showing location of section (red box) in rela-
tion to entire line (cyan line).Vertical exaggeration of sections, 4×.
Vertical exaggeration of locator map, 9.3×.
Figure S5. Topographically migrated cross-island transect,
x = 1112.2–1512.2 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S6. Topographically migrated cross-island transect,
x= 1512.4–1912.4 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S7. Topographically migrated cross-island transect,
x= 1912.6–2312.6 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S8. Topographically migrated cross-island transect,
x= 2312.8–2712.8 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S9. Topographically migrated cross-island transect,
x = 2713–3113 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S10. Topographically migrated cross-island transect,
x = 3131.2–3513.2 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S11. Topographically migrated cross-island transect,
x = 3400–3800 m. (a) Power-law-gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.3×.
Figure S12. Topographically migrated cross-island transect,
x = 3800–3900 m. (a) Power-law gained data. (b) AGC-gained
data. Locator map in centre showing location of section (red box) in
relation to entire line (cyan line).Vertical exaggeration of sections,
4×. Vertical exaggeration of locator map, 9.
Figure S13. Clustering results: x = 0–200 m. Vertical exaggeration
4×. Locator map on showing section displayed indicated by red
box.
Figure S14. Clustering results: x = 200.2–600.2 m. Vertical exag-
geration 4×. Locator map on showing section displayed indicated
by red box.
Figure S15. Clustering results: x = 600.4–1000.4 m. Vertical exag-
geration 4×. Locator map on showing section displayed indicated
by red box.

Figure S16. Clustering results: x = 712–1112 m. Vertical exagger-
ation 4×. Locator map on showing section displayed indicated by
red box.
Figure S17. Clustering results: x = 1112.2–1512.2 m. Vertical ex-
aggeration 4×. Locator map on showing section displayed indicated
by red box.
Figure S18. Clustering results: x = 1512.4–1912.4 m. Vertical ex-
aggeration 4×. Locator map on showing section displayed indicated
by red box.
Figure S19. Clustering results: x = 1912.6–2312.6 m. Vertical ex-
aggeration 4×. Locator map on showing section displayed indicated
by red box.
Figure S20. Clustering results: x = 2312.8–2712.8 m. Vertical ex-
aggeration 4×. Locator map on showing section displayed indicated
by red box.
Figure S21. Clustering results:x = 2713–3113 m. Vertical exagger-
ation 4×. Locator map on showing section displayed indicated by
red box.
Figure S22. Clustering results: x = 3113–3513.2 m. Vertical exag-
geration 4×. Locator map on showing section displayed indicated
by red box.
Figure S23. Clustering results: x = 3400–3800 m. Vertical exag-
geration 4×. Locator map on showing section displayed indicated
by red box.
Figure S24. Clustering results: x = 3800.2–3900 m. Vertical exag-
geration 4×. Locator map on showing section displayed indicated
by red box.
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : k - M E A N S C LU S T E R I N G
A L G O R I T H M A DA P T E D F O R PAT C H E S
O F S T RU C T U R E - PA R A L L E L V E C T O R S

A basic k-means algorithm can be written as follows (Steinley 2006):
Given a set of N vectors, (1) initially choose k vectors that rep-

resent the mean-vectors of k clusters. (2) For each vector in N,
compute the distance to each mean-vector in k. (3) Assign the cur-
rent vector to the cluster whose mean-vector is closest. (4) After
all vectors in N have been assigned, compute the new mean-vectors
of each cluster. (5) Repeat (2)–(4) until the mean-vectors do not
change significantly between iterations.

A given patch of structure-parallel vectors is defined as a 3-D
matrix, X, with dimensions n × m × 2, where X1 is a matrix
containing the first elements in each of the associated structure-
parallel vectors and X2 is a matrix containing the second elements
in the vectors. A visual example of a 3 × 3 patch of structure-parallel
vectors is shown in Fig. 3(b).

In order to compute a measure of closeness between patches of
structure-parallel vectors (as is necessary for steps 2–3 of the k-
means algorithm), we define the distance, D, between two patches
of structure-parallel vectors, X and M, as the L2,1-norm (Ding
et al. 2006; Cai et al. 2013; Du et al. 2015) of the matrix of element-
wise Euclidean norms between X and M (Bowling 2017),

D (X, M) =
∥∥∥∥∥∥
(∑2

l=1
(Xl − Ml )

◦2
)◦1/2

∥∥∥∥∥∥
2,1

, (A1)
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where the expression inside the double bars describes a matrix of
Euclidean norms between the vectors associated with patches X
and M. The computation of these element-wise Euclidean norms
is facilitated by the use of the Hadamard power operator ◦ (Reams
1999). Hadamard power operators act on the elements of a matrix
rather than on a matrix as a whole.

The exit criterion for the k-means algorithm (step 5 above) re-
quires the comparison of each cluster’s current mean to the cluster’s
mean at the previous iteration. This was accomplished in this work
by computing the change in a given mean, M, between iterations
n − 1 and n as the measure of the relative error (Golub & Van Loan
1996) between Mn−1 and Mn ,

D (Mn−1, Mn)

D (Mn)
, (A2)

with D being defined as in eq. (A1). Note that for the denominator
of eq. (A2), this distance metric operates on a single patch as a norm.
The use of relative error means that this metric is independent of the
number of individual structure-parallel vectors in M. The k-means
clustering algorithm now terminates when the maximum change
across all cluster means,


(n)max= max

{
D (M i,n−1, M i,n)

D (M i,n)
, . . . ,

D (Mk,n−1, Mk,n)

D (Mk,n)

}
, (A3)

falls below some user-defined tolerance (Bowling 2017), where
M i,n is the patch representing the mean of cluster i for i = 1, . . . , k
at iteration n.

With the above definitions and considerations, a k-means clus-
tering algorithm that is adapted for use with patches of structure-
parallel vectors can be described as follows (Bowling 2017):

Given a field of N structure-parallel vectors: (1) Initially choose
k patches of vectors of size n × m that each represent a mean-patch,
M, of k clusters. (2) For each vector, x, in N, compute the distance
between a patch of n × m vectors, X , centred on x, to each mean-
patch in k using eq. (A1). (3) Assign x to the cluster whose mean-
patch is closest to X . (4) After all vectors in N have been assigned,
compute the new mean-patch of each cluster through element-wise
averages of vectors in the patches assigned to each cluster. (5) Iterate
(2)–(4) until the maximum change across all cluster means, 
(n)max

[as per eq. (A3)], falls below some tolerance.
This algorithm was implemented in MATLAB and run using re-

sources at the Texas A&M High Performance Research Computing
center. Currently, the algorithm has a serial implementation and
runs on a single node. The serial implementation clustered the full
CIT in 51 h of computational time.
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