

NATURAL AND HISTORIC RESOURCES UNIT

A MANUAL FOR THE LANBIRD MONITORING PROGRAM OF STINAPA BONAIRE, NETHERLAND ANTILLES

Prepared by: Fernando Simal and Frank Rivera-Milán

Illustrations: Dominique Serafini

Bonaire, 25 January 2010

ACKNOWLEDGMENTS

I would like to thank Vogelsbescherming (Bird Life Netherland) and DCNA (Dutch Caribbean Nature Alliance) for continuing the support to the bird monitoring program of STINAPA Bonaire with both materials and training. I also would like to thank SCSCB (Society for Conservation and study of Caribbean Birds) for their support and training in monitoring techniques and the effort to standardize monitoring protocols for the whole Caribbean region.

CONTENT

- 1. Introduction
- 2. General Overview
- 3. Goal and Objectives
- 4. Target Species
- 5. Survey Design and Count Methodology
- 6. Appendices 1–5

INTRODUCTION

About 210 resident and migratory bird species are found on the island of Bonaire. More than half of these species are landbirds. Some of the landbirds are endemic subspecies. Despite its small area, Birdlife International designated five Important Bird Areas (IBAs) on Bonaire.

STINAPA Bonaire is responsible for managing the natural resources and national parks of the island. Data about bird population status and trends are needed to guide decisions and evaluate management actions. In this document we (1) present the objectives of a landbird monitoring program; (2) explain the rationale used for the selection of target species; and (3) provide information about survey design and count methodology.

This manual is a working tool for STINAPA employees and volunteers doing landbird surveys on Bonaire. The monitoring program is one step towards the conservation and management of birds and their habitats on the island. However, a cost-effective integration of research and monitoring is needed for informed management decisions and the evaluation of management actions. To this end, STINAPA Bonaire is working in partnership with national and international organizations, and is continuing with capacity building efforts for employees and volunteers from the island and abroad.

GENERAL OVERVIEW

- The monitoring program covers the areas considered potential habitat for feeding, nesting, and roosting of the selected species of landbirds on Bonaire.
- 2) Surveys are conducted at least twice per year (February-March and September-October). About 10 days are needed per sampling period.
- 3) Morning counts start after sunrise and stop at 10:00 hours. Afternoon counts start at 16:00 hours and stop before sunset.
- 4) At least two observers are needed for the collection of count and supplementary data related to habitat, food, disturbance, and other factors that may affect species detection and abundance at sampling units (fixed on-road and off-road points).
- 5) Additional information are collected about uncommon observations, such as large flocks in roosting areas, nesting activity, the presence of predators, and any other observation that may be of interest for research, monitoring, and management purposes. The location of these observations is recorded using GPS units. Date, time, and additional comments are also recorded. When possible photos are taken to provide complete documentation for future reference and consultation as needed.
- 6) Weather conditions are recorded as part of standard data collection.

 Just like any other activity conducted by STINAPA Bonaire, human safety is always considered a priority over the completion of survey activities.

GOAL AND OBJECTIVES

As mentioned before, STINAPA Bonaire is responsible for the conservation and management of the natural resources and national parks of the island. Accordingly, the goal of the monitoring program is to detect trends in bird populations. The detection of negative trends should promote the integration of research and monitoring to identify the factors behind the declines, guide management decisions, and evaluate the effect of management actions intended to maintain or enhance bird population numbers. The objectives of the monitoring program are the following:

- 1) Estimate the density (\hat{D} = number of individuals per unit area) of all target species in February-March (before yellow-shouldered parrot nesting) and September-October (after yellow shouldered parrot nesting).
- 2) Estimate population size (\hat{N} = number of individuals in survey region A) for all target species. The survey region covers about 17,000 hectares in northern, central, and southern Bonaire, including about 6,000 hectares inside the boundaries of WSNP.
- 3) Estimate rate of change (trend) within and between years (that is, $\hat{R}_t = \hat{D}_{t+1} / \hat{D}_t = \hat{N}_{t+1} / \hat{N}_t$). In a closed population (i.e., no immigration or emigration) rate of change in estimated density or abundance equals births minus deaths.
- 4) Estimate detection probability (\hat{P}) for all target species using a combination of standard and multiple-covariate distance sampling and count-removal method. Detection rarely equals 1 or remains constant across survey samples given the effect of survey and site specific covariates (e.g., observer, species, and habitat among many others).
- 5) Collect supplementary data about habitat, food, and disturbance at fixed on-road and off-road counting points.
- 6) Prepare density and abundance GIS maps to identify hot spots of target species on the island.
- 7) Educate and raise public awareness about the conservation and management of birds and their habitats on Bonaire.

TARGET SPECIES

It is not our intention to monitor all the landbird species of Bonaire. Seeking to maximize the cost-effectiveness and efficiency of the monitoring program, we selected landbird species with different ecologies and life history traits, but that may be representative of the conservation status of dry forests and shrublands on the island. For example, the survival and reproduction of frugivores depend

on rainfall and fruit abundance, and thus they may serve as indicators of habitat quality inside the national parks and unprotected areas affected by agriculture and development.

The main target species of this monitoring program are the Yellow-shouldered Parrot (Amazona barbadensis rotschildii) and Brown-throated Parakeet (Aratinga pertinax xantogenia). Both are frugivores and endemic subspecies of the island of Bonaire. The island holds a large percentage of the world population of yellow-shouldered parrots, which are listed as vulnerable in IUCN's red list.

Also included in the monitoring program are five species of pigeons (mainly fruit eaters) and doves (which eat fruits and grass seeds): Bare-eyed pigeon (Columba corensis), Scaly-naped Pigeon (Patagioenas squamosa), Eared Dove (Zenaida auriculata), Common ground-Dove (Columbina passerina) and White-tipped Dove, (Leptotila verreauxi).

Omnivore birds that inhabit Bonaire include the tropical mockingbird (*Mimus gilvus*) and the troupial (*Icterus icterus*). Both are widely distributed and abundant all over the island. The troupial was introduced in the 1970s and may be competing with native species such as the yellow oriole (*Icterus nigrularis*) and pearly-eyed thrasher (*Margarops fuscatus*). Troupials use the empty nests of other birds for nesting and prey on the eggs and nestlings of other landbirds. To start understanding their ecological interactions, these three species were also included in the monitoring program.

The target species are the following:

- 1) Yellow-shouldered parrot (Amazonia barbadensis rotschildii)
- 2) Brown-throated parakeet (Aratinga pertinax xantogenia)
- 3) Bare-eyed Pigeon (Columba corensis)
- 4) Scaly-naped pigeon (Columba squamosa)
- 5) Eared dove (Zenaida auriculata)
- 6) Common ground-dove (Columbina passerina)
- 7) White-tipped dove (Leptotila verreauxi)
- 8) Tropical mockingbird (Mimus gilvus)
- 9) Yellow oriole (*Icterus nigrularis*)
- 10) Troupial (Icterus icterus)
- 11) Pearly-eyed thrasher (Margarops fuscatus bonairensis)

SURVEY DESIGN AND COUNT METHODOLOGY

Randomization, replication, and stratification are important elements of survey sampling design. A 1-square kilometer grid (100 hectares) is used to establish 185 points (*k*) following a random-systematic design, which provides representative coverage of northern, central, and southern Bonaire (Appendices 1 and 2); 75 points are sampled in the northwest (WSNP, Brasil, Labra, Karpata,

Dos Pos, and Roi Sangu); 45 points are sampled in the center (Onima, Fontein, Bolivia, Seru Largu, Seru Grandi and surrounding areas); and 30 points are sampled in the south (Washikemba, Kralendijk, Flamingo Airport, Lima, Bakuna and surrounding areas).

Points are located along roads and off roads. When access to an off-road point was too difficult, another point is randomly selected ≤ 500 meters of the center of the original point. Points are separated by a minimum distance of 400 meters. Two-observers conducted the counts, with one observer recording the data and the observer measuring detection distances and angles.

To meet the basic assumptions of distance sampling (i.e., birds at point centers are always detected; distances are measured to initial location; and distances are measured without error) the observers remain side by side for 6 minutes, recording aural and visual detections per minute, and measuring distances from points to birds detected singly or the geometric center of clusters (2 or more birds). Rangefinders binoculars are used to measure exact distances; but when this is not possible, detection distances were grouped into 10 categories (0–15, 16–30, 31–45, 46–60, 61–90, 91–120, 121–180, 181–240, 241–340, and 341–440 meters). Flying birds are counted but not included in density estimates, unless their initial locations were determined during or immediately after the 6-minute count. Distance sampling and count-removal (time-of-first detection) are used for parameter estimation and modeling.

To estimate rate of change over time, the surveys are conducted before and after the reproduction of yellow-shouldered parrots. At this time parrots of different ages and sexes are available to be included in the surveys. Other data collected included: date, time of day, temperature, wind speed, relative humidity, distance to roads, land cover, threats, and food abundance (see Appendix 4).

Appendix 1. Three regions used to establish 6-minute counting points on Bonaire.

Appendix 2. Random-systematic design for 185 counting points in northern, central, and southern Bonaire; 150 points were surveyed in March 2010.

Appendix 3. List of counting points and GPS coordinates

Point	Latitude	Longitude
BONA001	12.30429	-68.39464
BONA002	12.30512	-68.38538
BONA003	12.30353	-68.3754
BONA004	12.30233	-68.36627
BONA005	12.2958	-68.3652
BONA006	12.29519	-68.37492
BONA007	12.29533	-68.38507
BONA008	12.29555	-68.39487
BONA009	12.29508	-68.40427
BONA010	12.2851	-68.35551
BONA011	12.28537	-68.3653
BONA012	12.28565	-68.37488
BONA013	12.28552	-68.38467
BONA014	12.28571	-68.39536
BONA015	12.28524	-68.40513
BONA016	12.27491	-68.35498
BONA017	12.27494	-68.36512
BONA018	12.27498	-68.37442
BONA019	12.27430	-68.38474
BONA019		-68.39473
	12.27537	
BONA021	12.27552	-68.40557
BONA022	12.26517	-68.35491
BONA023	12.265	-68.36479
BONA024	12.26492	-68.37457
BONA025	12.26518	-68.38478
BONA026	12.26507	-68.39508
BONA027	12.26521	-68.4053
BONA028	12.25578	-68.36531
BONA029	12.25542	-68.37489
BONA030	12.25604	-68.38477
BONA031	12.25558	-68.39474
BONA032	12.25561	-68.40437
BONA033	12.25551	-68.41467
BONA034	12.24564	-68.36535
BONA035	12.24587	-68.37522
		-68.38481
BONA036	12.24555	
BONA037	12.24537	-68.39474
BONA037B	12.24792	-68.39776
BONA038	12.24527	-68.40517
BONA039	12.23534	-68.38529
BONA040	12.23485	-68.39479
BONA040B	12.23036	-68.39461
BONA041	12.2354	-68.4051
BONA041B	12.23525	-68.40072
BONA042	12.22573	-68.38486

```
BONA043
           12.22578
                       -68.39501
BONA044
           12.22739
                       -68.40453
BONA045
           12.22546
                       -68.37625
BONA046
           12.28997
                       -68.37563
BONA048
           12.26738
                       -68.34672
BONA049
           12.26369
                       -68.34698
BONA050
           12.26255
                       -68.35057
BONA051
           12.25922
                       -68.34919
BONA052
           12.25681
                       -68.35202
BONA053
           12.25302
                       -68.3518
BONA054
           12.24973
                       -68.34972
BONA055
           12.24359
                       -68.29778
BONA056
           12.24004
                       -68.29864
BONA057
           12.23863
                       -68.35781
BONA058
           12.23856
                       -68.36163
BONA059
           12.23956
                       -68.36559
BONA060
           12.23883
                       -68.35406
           12.23982
BONA061
                       -68.35044
BONA062
           12.23862
                       -68.34687
BONA063
           12.235
                             -68.34728
           12.2322
BONA064
                       -68.34478
BONA065
           12.231816
                       -68.337282
           12.22711525 -68.33770234
BONA066
BONA067
           12.22208459 -68.33760882
BONA068
           12.21721329 -68.33752759
BONA069
           12.22216534 -68.3427562
BONA070
           12.22695642 -68.3426503
           12.22703693 -68.34747079
BONA071
BONA072
           12.22232573 -68.34787977
BONA073
           12.22232625 -68.35261844
BONA074
           12.22751656 -68.35261795
BONA075
           12.23206792 -68.35261752
BONA076
           12.23222801 -68.35751965
BONA077
           12.2274371 -68.35760175
           12.23238799 -68.36234015
BONA078
BONA079
           12.22743735 -68.36250392
BONA080
           12.22751731 -68.36773307
BONA081
           12.21745279 -68.33243614
BONA082
           12.222244
                      -68.33251683
BONA083
           12.22727467 -68.3325159
BONA084
           12.23198595 -68.33259687
BONA085
           12.23677713 -68.33251452
BONA086
           12.24220735 -68.33251395
           12.24747773 -68.33226807
BONA087
BONA088
           12.25218898 -68.33283934
BONA089
           12.2571398 -68.33275696
BONA090
           12.26209083 -68.33267467
BONA091
           12.25234443 -68.32279396
```

```
BONA092
           12.24742434 -68.32287797
           12.23704606 -68.3229612
BONA093
BONA094
           12.23118341 -68.32296241
           12.22682576 -68.3230443
BONA095
BONA096
           12.22151724 -68.32272142
BONA097
           12.21644683 -68.32280355
           12.21644459 -68.31291414
BONA098
BONA099
           12.2219904 -68.31283181
BONA100
           12.22729841 -68.31274947
BONA101
           12.23205181 -68.31250507
BONA102
           12.21169075 -68.31259093
           12.23680537 -68.31258489
BONA103
BONA104
           12.24187602 -68.31266457
BONA105
           12.24734304 -68.31233871
BONA<sub>106</sub>
           12.20701597 -68.3125919
BONA107
           12.20257527 -68.30270265
BONA108
           12.20725141 -68.30286448
BONA109
           12.21248049 -68.30278215
BONA110
           12.21731331 -68.3026998
BONA111
           12.22214614 -68.30277948
BONA112
           12.22697904 -68.30294014
           12.23244582 -68.30269511
BONA113
BONA114
           12.23735841 -68.30261191
BONA115
           12.24219149 -68.30285354
BONA116
           12.24234771 -68.2926373
BONA117
           12.23695993 -68.29304486
BONA118
           12.23141377 -68.29296578
BONA119
           12.22650156 -68.2929674
BONA120
           12.22158929 -68.29288779
BONA121
           12.21691455 -68.29264581
BONA122
           12.21144735 -68.29264711
BONA123
           12.20624814 -68.29267265
BONA124
           12.20148339 -68.29267413
BONA125
           12.19679795 -68.29283803
BONA126
           12.19171511 -68.29275827
BONA127
           12.18774301 -68.2929215
BONA128
           12.18726391 -68.2823583
BONA129
           12.17733721 -68.28252448
BONA130
           12.16748882 -68.28260949
BONA131
           12.1975875 -68.2827608
BONA132
           12.20680219 -68.28283856
BONA134
           12.21680806 -68.28307872
BONA135
           12.22649645 -68.28283156
           12.22649292 -68.27283705
BONA136
BONA137
           12.21712198 -68.27267843
BONA138
           12.2074337 -68.27243854
BONA139
           12.19718946 -68.27292993
BONA140
           12.18726192 -68.27277085
```

```
BONA141
           12.1769377 -68.27253102
BONA142
           12.16788356 -68.27245221
BONA143
           12.16112982 -68.27277335
BONA144
           12.16184076 -68.25782663
BONA145
           12.17700856 -68.25806341
BONA146
           12.18741158 -68.25789628
BONA147
           12.19741853 -68.2577294
BONA148
           12.2112378 -68.25772249
BONA149
           12.22251464 -68.25755499
BONA150
           12.22211108 -68.24309162
BONA151
           12.20757814 -68.24301812
BONA152
           12.19209255 -68.24302576
BONA153
           12.17716043 -68.2424645
BONA154
           12.16238972 -68.24279678
BONA155
           12.14704702 -68.24267686
BONA156
           12.13187938 -68.24276576
BONA157
           12.12695028 -68.23310162
BONA158
           12.14219778 -68.23260635
BONA159
           12.15736602 -68.23284142
BONA160
           12.17190227 -68.2325922
           12.18675301 -68.23266486
BONA161
BONA162
           12.20184405 -68.23273862
BONA163
           12.21717063 -68.23264883
BONA165
           12.14152149 -68.25258965
BONA164
           12.14201272 -68.2174716
BONA165
           12.13637971 -68.22706075
BONA166
           12.131848
                     -68.21796539
BONA167
           12.18483186 -68.24506826
BONA168
           12.16975213 -68.26497958
BONA169
           12.15553122 -68.25101301
           12.14964173 -68.22721379
BONA170
BONA171
           12.16226671 -68.22281998
BONA172
           12.17298785 -68.22281371
BONA173
           12.18569462 -68.22256189
BONA174
           12.20173588 -68.22230901
BONA175
           12.21213742 -68.217914
BONA176
           12.12704217 -68.20785398
BONA177
           12.12603646 -68.25748457
BONA180
           12.13628516 -68.26259804
BONA181
           12.14724616 -68.26665542
BONA182
           12.1558223 -68.26437732
BONA184
           12.12675878 -68.27291666
BONA185
           12.17004395 -68.25000984
```

Appendix 4. Data sheet used for landbird surveys on Bonaire.

OBS1				DATE TIME									WIND	SPEE	<u>)</u>			POINT		
OBS2													PRECIPITATION Y/N							
LAT-LONG	-LONG TEMP.									DIST	ANCE	ROAD								
	CLUCTED	DISTANCE		DET HIS TORY 1=A, 2=V				1 _ X 7	OBGERVE	0.15	15-30	20.45	45.60	60.00	00 120	120 100	100.210	240 240	340-440	- 440N
SPECIES	CLUSTER	DISTANCE	ANGLE	DE	I IIIS	IOKI	1=A, 2	2= v	OBSERVER	0-15	15-30	30-43	45-60	00-90	90-120	120-180	160-240	240-340	340-440	>440IV
							\top													
							\top													
					\Box		\bot													
					\vdash	_	+						ļ							
					$\vdash \vdash$	+	╁┤				-	-	1			-				-
					\vdash	-	+							-						
						-	+													
					\dashv	_	+													
					\perp		\perp													
THREAT (200	M		VEGETAT	TON	(200.7	<u></u>			DICTUDDAN	ICE (2)	00.340		FOOI	CDEC	TEC (20.)	MD			Present	Daanin
None ()	<u>N1)</u>		0=None (<u>ION</u>)	(200 1	<u>V1)</u>			DISTURBANCE (200 M) 0=None ()				FOOD SPECIES (30 M) Brasilwood Haematoxilon brasiletto						Present	Bearin
Hunting ()		1=1-25% ((1=1-25% (<u></u>			Calab	ash <i>Cre</i>	scentia c	ujete				
Wind () Fire ()			2=26-50% 3=51-75%						2=26-50% (3=51-75% ()						ereuslanu				
Trash ()			4=76-100%)				4=76-100% (,			Candle cactus Ritterocereus gris Candle cactus Subpilocereus re							
Development (Century plant Agave vivipara							
Road () Invasive plants			HABITAT 0=None ((200	<u>M)</u>				FOOD DIVE 0=None ((30 M)	1				a succuler a dentata			<u> </u>	
Predator (1=1-25% (<i></i>					1=1-2 S pp (i tortuosa					
Traffic ()			2=26-50%)				2=3-4 S pp ()					salpinia					
Other ()			3=51-75% 4=76-100%))				3=>4 S pp ()					dia accu Guaiaci	tata ım officir	iale			
													Olive	woodC	apparis o	odorati ssi r				
LAND COVE	R (200 M)	(0, 1, 2,	2 (1)						FOOD ABUI		CE (30 I	M)			rsera sim ccoloba i					
Mangrove Buttonwood		(0, 1, 2, (0, 1, 2,	3, 4) 3, 4)						0=None (1=1-25% ()					ccotoba i marindu:					
Herbaceous W	etland	(0, 1, 2,	3, 4)						2=26-50% (()			West i	ndian	cherry M	alpighia		ata		
Dry forest Dry Shrublan		(0, 1, 2, (0, 1, 2,	3, 4)						3=51-75% (4=76-100% ()						on ai rensi ncularia		7		
Agriculture		(0, 1, 2, 0)	3, 4)						, 3-100 /0 (,						billbergi		-		
Urban		(0, 1, 2,	3, 4)										Other	unkno	wn speci	es				
Bare ground Water		(0, 1, 2, 0) (0, 1, 2, 0)	3, 4)																-	-
VER. COVER		(0, 1, 2, (0, 1, 2,	3, 4) 3, 4)																	
IIOR. COVER	(30 111)	(υ, 1, 2,	J, 4)																	
COMMENTS																				

Appendix 5. Checklist of equipment and materials needed for fieldwork.

- Binoculars*
- Range finder*
- Compass
- Digital camera
- GPS unit with survey points
- Kestrel weather tracker or similar
- Extra batteries for electronic devices
- Vehicle with enough fuel (1/2 tank minimum per session)
- Field notebook
- Field forms
- Bird identification guides, cards, pictures
- Pencil/pen (permanent ink) and extra ones
- Drinking water
- Hat
- Sunglasses
- Sunscreen lotion
- Insect repellent
- First aid kit
- Machete
- Gloves
- Adequate shoes and clothing

^{*}Rangefinder binoculars (2 in 1) are recommended to facilitate observation and measurement of detection distances.