Composition and distribution of the near-shore waters bordering the

coral reefs of Aruba, Bonaire, and Curação in the Southern Caribbean

Fleur C. van Duyl¹, Vincent E.A. Post^{2,3}, Boris M. van Breukelen⁴, Victor Bense⁵, Petra M. Visser⁶,

Erik H. Meesters^{7,8}, Paul Koeniger², Mark J.A. Vermeif^{6,9,*}

¹Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea

Research, PO Box 59, Den Burg, Texel, The Netherlands

²Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, Hannover,

Germany

³Present address: EDINSI Groundwater, Rivierahof 6, 1394 DC, Nederhorst den Berg, The

Netherlands

⁴Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of

Water Management, Stevinweg 1, 2628 CN, Delft, the Netherlands

⁵Department of Environmental Sciences, Wageningen University and Research,

Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands

⁶Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem

Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands

⁷Wageningen Marine Research, Wageningen University and Research, 1781, AG, Den Helder,

the Netherlands

⁸Aquatic Ecology and Water Quality Management, Wageningen University and Research, 6700,

AA, Wageningen, the Netherlands

⁹CARMABI Foundation, P.O. Box 2090, Piscaderabaai z/n, Willemstad, Curaçao

*Corresponding author. Email address: m.j.a.vermeij@uva.nl

Keywords: Nutrients - Eutrophication - Internal waves- deep chlorophyll maximum

1

Highlights

- 1. Three distinct water types were identified bordering the Southern Caribbean ABC islands.
- Chlorophyll distributions suggest rapid uptake of terrestrial nutrient inputs in coastal waters.
- 3. A fluctuating pycnocline indicates the presence of internal waves in the Southern Caribbean.

Abstract

This study aimed to identify ocean- and land-based sources of nutrients to the coral reef communities surrounding the Southern Caribbean islands Aruba, Bonaire, and Curaçao (ABC islands). The composition of water masses around these islands were assessed to depths up to 300 meters and three distinct overlying water masses were identified, separated by mixing zones. A fluctuating pycnocline separating surface from deeper (> ~50 m) water indicated the presence of internal waves. Nutrient profiles were typical of tropical waters with oligotrophic waters occurring above the pycnocline and a deep chlorophyll maximum (DCM) just below it (~65 m). Concentrations of dissolved nutrients differed among islands. Inorganic nitrogen (DIN) and phosphate concentrations were respectively lowest around Bonaire and Curaçao. The spatial distribution of chlorophyll-a (indicative of phytoplankton abundance), rather than nutrient concentrations, suggested the presence of higher-than-average nutrient concentrations in islands with higher population densities, near urbanized/ industrial areas, and near upwelling areas.

Introduction

The Caribbean Sea is generally characterized by a distinct stratification of vertically separated water masses whose hydrodynamics, distribution, and composition influence the functioning and composition of nearby coral reef systems (e.g., De'ath and Fabricius, 2010; Fabricius, 2005; Szmant, 2002; Wiedenmann et al., 2013). The upper water layer is comprised of Caribbean Surface Water (CSW) and has a thickness of maximum 100 m and a salinity less than 35.5 (Casanova-Masjoan et al., 2018; Hernández-Guerra and Joyce, 2000). The CSW layer is well mixed across its depth range and consists of North Atlantic Surface Water mixed with rain and freshwater originating from the South American continent, including the Amazon and Orinoco rivers. Beneath this layer lies the North Atlantic Subtropical Under-Water (SUW) originating from the central tropical Atlantic. SUW is characterized by a vertical salinity maximum (exceeding 37 %) generally found between depths of 100 and 175 m depending on location in the Caribbean (Correa-Ramirez et al., 2019; Metcalf, 1976; Qu et al., 2016). CSW is generally characterized by lower nitrate concentrations than the SUW (CSW: <1.5 and SUW: 1-8 μmol/L, Cervantes-Díaz et al., 2022; Corredor and Morell, 2001). Both CSW and SUW, including the mixing zone between them, influence coastal marine organisms including calcifying corals that are abundant in shallow waters (< 60m) and of which some can occur to depths up to 150 m in Aruba, Bonaire, and Curação, i.e., the ABC islands (Frade et al., 2019). Below the SUW, water masses with Atlantic and Antarctic origins (e.g., western North Atlantic Central Water (wNACW), Antarctic Intermediate Water (AAIW)) are found that reach to the bottom and are characterized by specific salinities (35.6-36.7 and 33.8-34.5 %, respectively), temperatures (~8-19 °C and ~3-5 °C, respectively) and nutrient concentrations that are higher than those of the CSW and SUW (Cervantes-Díaz et al., 2022; Metcalf, 1976; Morrison and Nowlin, 1982).

In an area along the coast of South America roughly bounded by Trinidad in the East and Barranquilla (Colombia) in the West, seasonal upwelling often moves deep nutrient-rich waters

towards the surface between December to March and in July (Astor et al., 2003; Castellanos et al., 2002; Correa-Ramirez et al., 2019; Rueda-Roa and Müller-Karger, 2013). Ekman transport causes these upwelled waters to move in a northern direction where they can reach the ABC islands, located < 100 km from the South American continent (Bongaerts et al., 2015; Frade et al., 2019; Leichter et al., 2006). Such oceanic influences together with nutrient inputs of terrestrial origins (e.g., poorly, or non-treated domestic sewage, industrial waste) affect the biochemical composition of nearshore waters surrounding these Caribbean islands (DeGeorges et al., 2010; Suchley and Alvarez-Filip, 2018). Land-derived nutrients can also enter the islands' near-shore waters as direct discharge, run-off, and through submarine groundwater discharge (Lapointe et al., 1990; Moosdorf et al., 2015). Resulting nutrient influxes can occur as local and relatively shortlived (hours to days) events after heavy rains or as a more diffuse and chronic process when e.g., sewage infrastructure is permanently damaged (Häder et al., 2020; Wear and Thurber, 2015). Regardless of the mechanism, excess nutrients often alter the functioning of reef communities by benefitting fast-growing organisms such as fleshy algae that then outcompete slower growing organisms such as reef building corals (e.g., Adam et al., 2021; McCook, 1999; McManus and Polsenberg, 2004). The latter occur relatively abundantly around the ABC islands compared to other Caribbean locations (Jackson et al., 2013) and provide communities on the islands with a variety of ecological services through e.g., tourism, coastal protection, and artisanal fisheries that account for 16 to 45% of these islands' Gross Domestic Products (Polaszek et al., 2018; van der Lely et al., 2013; Waitt Institute, 2016).

As on many other Caribbean islands, nutrient concentrations have been measured around the ABC islands at relatively shallow depths (< 20 m, e.g., Den Haan et al., 2016; Gast et al., 1999; Lapointe and Mallin, 2011; Slijkerman et al., 2014; Van Duyl and Gast, 2001). However, little is known to what degree large-scale intra- and inter-island differences in water composition, including nutrient concentrations, exist, and whether they result from the influx of offshore waterbodies, upwelling and/or terrestrial sources. Such geographical differences in water

chemistry composition likely account for some of the spatial differences in reef community composition. To illustrate, the brown algal genus *Lobophora* has historically been very abundant at the deeper reef sections (>40 m) of the leeward coasts of Bonaire and Curaçao (Van den Hoek et al., 1978). Such domination of benthic algae could be regarded as a sign of reef degradation through eutrophication caused by human activities on shore, but upwelling of nutrient rich water could also explain the distribution of these algae. In short, it is currently not well known if and to what degree spatial differences in nutrient regimes exist in the ABC islands' offshore waters and, if present, if such spatial differences result from underlying natural (e.g., island mass effects, upwelling) or anthropogenic influences. This study strives to address this information gap by combining shipboard analyses of physical oceanographic parameters, nutrient concentrations, and isotopic signatures to describe the distribution and stratification of water masses surrounding the ABC islands.

Studied system and Methods

Island characteristics. The Caribbean islands of Aruba (179 km², 600 persons km² on average in 2022, (CBS-AU, 2022)), Bonaire (287 km², 72 persons km² on average in 2020, (CBS-NL, 2020)), and Curaçao (444 km², 335 persons km² on average in 2021, (CBS-CW, 2023)) are often referred to as the ABC Islands (Fig. 1). They are the three western-most islands of the Aruba-La Blanquila chain located 27 (Aruba) to 86 km (Bonaire) north of Venezuela. The ABC islands are generally hilly on their western side, but otherwise relatively flat with maximum elevations of 189 m (Aruba), 241 m (Bonaire), and 375 m (Curaçao). They harbor small beaches and inland bays that formed when former river valleys flooded during sea level rises during the Holocene. Sandy beaches are more pronounced in Aruba and in contrast to the other islands, Aruba's southwestern side is largely flanked by a lagoon.

The geology and hydrogeology of the ABC islands are somewhat comparable. Their coasts are to various degrees comprised of partially karstified, permeable limestone terraces bordering poorly permeable volcanic rock at the islands' centers (Westermann, 1949). Based on limited knowledge of the functioning of karstic aquifers in the ABC islands, groundwater discharge through conduits is expected along the islands' shores and seafloor (Abtmaier, 1978; Hummelinck, 1943; van Sambeek et al., 2000). Groundwater in all islands is slightly brackish due to high evapotranspiration, seawater intrusion due to tidal pumping, and sea spray (van Sambeek et al., 2000). Widespread contamination of groundwater has occurred, especially in built-up areas due to the presence of leaking septic tanks and cesspits (Arboleda and Peachey, 2016; van Sambeek et al., 2000).

Climate. Mean monthly sea water temperatures range between 27 °C in March and 29 °C in September/October (Skirving et al., 2020). Rainfall foremost occurs between September to January but is highly variable among years and across each island (DMA, 2019; MDC, 2023). Average annual rainfall is lowest in Aruba (470 mm) followed by Bonaire (490 mm), and Curaçao (550 mm, Schmutz et al., 2017). All islands experience sustained moderate easterly trade wind resulting in waves up to 3.5 m along the windward (northern and eastern) shores of the islands throughout the year, while the leeward (southern and western) shores of the islands experience wave heights of less than 1 m (Van Duyl, 1985). The ABC islands lie just outside the hurricane belt.

Local currents. Aruba is, contrary to Bonaire and Curaçao, not separated from the Venezuelan continent by the Bonaire Basin, and part of the Venezuelan continental flat (Van den Oever, 2000). The maximum water depth between Aruba and the Venezuelan peninsula is less than 190 m but around 1500 m for the oceanic islands Curaçao and Bonaire. The Caribbean Current, forced by the eastern trade winds, is the major ocean current influencing the ABC islands (Wüst, 1963). It

transports Atlantic Ocean water through the Grenada, St. Vincent, and St. Lucia Passages in a westward direction along the coast of South America towards the Gulf Stream (Centurioni and Niiler, 2003). While moving westward along the South American continent, the Caribbean Current receives an influx of fresh water from various rivers, including the Amazon and the Orinoco (Chérubin and Richardson, 2007). While highly variable, the overall mean velocity of the Caribbean Current near the ABC islands is estimated at 70 cm/s with higher values reported up to 123 cm/s (Fratantoni, 2001; Gyory et al., 2009).

General data collection

All data were collected between January 25 and February 2, 2018 from the oceanographic research vessel *Pelagia* as part of the Netherlands Initiative Changing Oceans (NICO) expedition (Leg 3, expedition number 64PE430). The water column was sampled at 8 sites in Bonaire and Curaçao and 2 sites in Aruba to produce a biochemical and physical descriptions of water bodies located ~250 to 1500 m offshore (farther in Aruba due to shallow bathymetry) and across their entire depth range (range: 60-300 m; Fig. 1). The site near Bonaire's capital Kralendijk (Fig. 1d) encompassed a zone of ~2.5 km along shore where 6 additional stations were sampled either late afternoon (stations 6, 10) or at sunrise (stations 4, 8, 12, 15, note that station 8 and 12 are overlapping stations in Fig. 1). Given their proximity to one another, these additional stations were, together with the station 2 (sampled late afternoon), considered as one "site" to investigate the presence of short-term changes in water quality and stratification between January 26 (3:20 pm, local time) to January 30 (6:43 am), 2018. The 6 additional stations were not used for inter-island comparisons in water column characteristics.

Physical characteristics of the water column. At each station the potential temperature, salinity, water density, light transmission, and chlorophyll-a fluorescence were measured across

the entire water column by lowering a CTD package from the surface to a few meters above the seafloor. The CTD package comprised a Seabird CTD (SBE9plus), a SBE11plusV2 deck unit, a water sampler carousel (SBE32) connected to a pump (SBE5T), a thermometer (SBE3plus), a conductivity sensor (SBE4), a dissolved oxygen sensor (SBE43), a fluorometer (Chelsea Aquatracka MKIII), a transmissometer (Wetlabs C-Star, 25 cm path length, 650 nm), and an in water photosynthetic active radiation (PAR) sensor that was used in combination with a ship based PAR sensor (Satlantic logarithmic) to determine light extinction with increasing depth. pH was measured in water samples (see below) using a Schott Gerate CG840 pH meter and a Schott blue line 15 electrode that were calibrated using buffer solutions of pH = 4.01 and pH = 7.00 (Certipur). The density of seawater was calculated using the TEOS-10 method (Pawlowicz 2010).

Water characteristics. At each site, water samples from different depths were analyzed for nutrient concentrations (PO₄, NH₄, NO₂ and NO_x, i.e., NO₃, and NO₂ combined), ²²²Rn (indicative of groundwater influx) and ¹⁸O and ²H (indicative of the water's geographic origin). Water samples were collected at depths between 3 and 59 to 280 m using a Rosette sampling frame with 24 twelve-liter Niskin sampling bottles (Ocean Test Equipment) that were mounted on the CTD package. Before taking each water sample, Niskin bottles were flushed at each sampling depth for at least one minute to ensure a representative *in-situ* sample was collected. On board, subsamples from the Niskin bottles were collected using 60 ml HDPE syringes after three rinses with the sampled water. Nutrient concentrations were determined using a Gas Segmented Continuous Flow Analyzer (QuAAtro) using individual channels for PO₄, NH₄, NO₂ and NO_x. Stock-standards low nutrient seawater (LNSW from OSIL batch LNS 21) with the same salinity as the samples were diluted in filtered (0.2 mm) seawater and used for calibration prior to all measurements (Hydes et al., 2010). Detection limits for PO₄, NH₄, NO₃, and NO₂ were 0.02, 0.04, 0.015, and 0.001 μmol/L, respectively. Precision among repeated measurements on the same sample was high and variation among replicate samples ranged between 0.7 and 1.2 %. All

nutrient analyses were conducted in a containerized temperature-controlled laboratory on board the RV Pelagia within 12 hours after sampling. The salinity of the surface water (~4 m depth) was constantly measured while the Pelagia was in transit using a shipboard CTD (Aqua Flow system, Seabird SBE 21).

To determine the abundance of 222 Rn isotopes, a sample was obtained by placing a glass bottle inside a larger glass container overflowing with water from the Niskin bottle containing seawater of a specific depth. The bottle was then capped underwater to prevent radon loss to the atmosphere. The sample was equilibrated with a known volume of air in a closed loop system for 30 minutes, followed by three measurement cycles lasting 30 minutes each. Radon activity was quantified using alpha-spectroscopy (SARAD EQF3220). Water samples to determine the abundance of stable water isotopes (18 O and 2 H) were collected separately in glass vials that were stored at 4 $^{\circ}$ C on board for analysis at BGR, Hannover, Germany using a cavity ring-down laser spectrometer (PICARRO L2120-i). Reported values represent the mean of at least four individual measurements from each sample. Raw data were checked for organic contamination using ChemCorrect and corrected for memory effects, drift, and normalized to the VSMOW/SLAP scale (Nelson, 2000). All values are given in delta notation per mil ($^{\infty}$) vs. V-SMOW (Vienna Standard Mean Ocean Water). Reproducibility, measured as the standard deviation of a quality control standard, was better than 0.8% and 0.20 $^{\infty}$ for 5° H and 5° BO, respectively.

Results

General water column characteristics. Depth profiles for salinity (S), potential temperature (θ), and density (σ_{θ}) are shown in Fig. 2 for each island. On Bonaire and Curaçao (Fig. 2a, b), a well-mixed ~50 m thick surface layer was observed with S and θ values mostly typical of CSW during the rainy season, i.e., ~36 g kg⁻¹and 27 °C. This water layer appeared slightly less thick in Aruba, where only two sites were sampled (Fig. 2c). Below the CSW, a zone occurred where salinity

concentrations increased with depth, indicating the presence of a halocline. This zone ended around 80 m on Bonaire and Curaçao, and at ~50 m depth in Aruba. Below these depths, water layer characteristics approached values typically reported for SUW, i.e., $S = ~37 \text{ g kg}^{-1}$ and $\theta = 22 \,^{\circ}\text{C}$. The depth of the top of the shallow pycnocline, i.e., the transition zone with the greatest density gradient between the well-mixed CSW and underlying SUW waters, defined as the depth where the density increases by more than $0.05 \, \text{kg/m}^3$ over a 1 m depth interval, varied depending on sampling location and time. The pycnocline occurred between ~33 and 60 m depth in Bonaire, between ~43 and 68 m in Curaçao, and between ~21 and 45 m in Aruba (Fig. 2). The decline in S and θ with depth in the SUW layer suggests mechanical turbulent mixing with an underlying layer starting just below 300 m, most likely wNACW based the physical definitions for these water masses from nearby Colombia (wNACW: ~36 ‰, ~13 °C, Correa-Ramirez et al., 2019).

Differences in the depth profiles of salinity, temperature, and density measured during our study appeared more pronounced among rather than within islands, with the exception of station 14, located on the northeastern side of Bonaire (Figs. 1, 2a). The salinity of the surface water at this station was relatively low (~35.45 ‰), and its halocline was characterized by relatively high temperatures (up to 28 °C, Fig. 2a). In the potential temperature-salinity diagram (Fig. 3) station 14 (indicated by open triangles) deviated from all other stations in Bonaire and other islands whose water masses showed a comparable relationship between potential temperature and salinity. Stations at the exposed tips (16, 22, 24) and more exposed stations along the islands' leeward coasts (11, 22) are also shown in Fig. 3 as open symbols (similar to station 14) to visualize potential differences between stations along the islands' wind- and leeward coasts. Somewhat similar to station 14, the average salinity in the surface layer (i.e., < 50 m) in Aruba was higher (though the temperature lower) compared to the other two islands (Fig. 2). A general increase in surface water salinity from east (Bonaire) to west (Aruba) was also found from continuous shipboard measurements (~3-5 m depth, Fig. 4) and likely indicates a decreasing

influence of freshwater input from South American rivers when moving in a westerly direction in the area under investigation.

Isotopes. No significant influxes of terrestrial groundwater were observed as the abundance of 222 Radon isotopes in water samples along Curação and Bonaire between 4 and 250 m depth were all below the detection limit. δ^2 H and δ^{18} O values (Fig. 5) indicated depth specific differences in isotopic enrichment relative to V-SMOW (δ^2 H= 0.0 ‰; δ^{18} O= 0.0 ‰). Increases in δ^2 H and δ^{18} O coincided with increases in salinity (Fig. 5a, b) and are typical for tropical environments with high evaporation rates. Surface layer waters were characterized by salinities as low as 35.60 and by isotopic values of 5‰ < δ^2 H < 7 ‰ and 0.6‰ < δ^{18} O < 1 ‰ (cf. Fig. 5a, b). With increasing depth surface water often became mixed with SUW resulting in salinities up to 36.95 and isotopic values of 6 ‰ < δ^2 H < 8 ‰ and 0.8 ‰ < δ^{18} O < 1.1 ‰. SUW also mixed with an underlying water mass and based on extrapolation, this deeper water was characterized by salinities less than 35.85, and isotopic values of δ^2 H < 3.5 ‰, and δ^{18} O < 0.55 ‰ suggesting mixing of SUW with deeper Atlantic waters (e.g., wNACW, Fig. 3).

For comparison, two known relationships between $\delta^{18}O$ and salinity from elsewhere in the Caribbean Sea have been plotted in Fig. 5b, one from Puerto Rico (Watanabe et al., 2001) and one from Venezuela (McConnell et al., 2009). Only the seawater in the mixed surface layer and near the halocline at station 12 deviated from the general patterns in Caribbean water stratification described for Puerto Rico, Venezuela, and all other stations included in this study. Station 12 was characterized by relatively low $\delta^{18}O$ values that showed no correlation with salinity, and its average δ^2H value was relatively high (Fig. 5). We are not aware of any process that would explain this observation, though this site was close to a man-made canal system that could have affected our observations at this station.

Nutrient concentrations. The distribution of nutrients showed a relatively consistent general pattern across depth among all sampled stations (Tab. 1, Fig. 6). Average NO₃ and PO₄

concentrations were lowest and relatively constant within the mixed surface layer (~0.15 and ~0.03 µmol/L, respectively). Below the mixed surface layer (i.e., > ~50 m), NO₃ and PO₄ concentrations increased (linearly) with depth over the entire depth range sampled (Fig. 6). NH₄ concentrations were relatively stable across depth (Tab. 1, Fig. 6) though higher concentrations of NH₄ were observed locally in the mixed surface layer (i.e., station 7 in Bonaire, 0.479 μmol/L, not shown in Fig. 6a). NH₄ concentrations decreased slightly below ~70 m to average concentrations of ≤0.09 µmol/L (Fig. 6). NO₂ concentrations were low at the surface (~0.02 μmol/L) and increased with depth to 60-70 m (~0.08 μmol/L) after which they declined towards greater depths and became stable at depths greater than ~150 m (~0.01 µmol/L, Fig. 6). The increased abundance of NO₂ around 60-70 m was most pronounced in Bonaire. Average DIN:DIP ratios in the islands' surface waters (< 50 m depth) were lowest in Bonaire (8.1 ± 4.9 SD), and different from those in Curacao (21.3 \pm 27.4 SD) and Aruba (24.8 \pm 10.3 SD, KW-Test, p< 0.05). DIN:DIP ratios in Bonaire increased to values of ~18 with depth (to ~65 m), similar to values observed in shallower waters in Curação and Aruba. Below ~65 m DIN:DIP ratios were constant in all islands across the depth range sampled (i.e., in the SUW, Fig. 6). Across the entire dataset, NO_3 and PO_4 concentrations were highly correlated (Pearson's r. 0.99, p < 0.001, n = 142). Significant general correlations among other nutrient concentrations were negative and less pronounced (PO₄ – NH₄: Pearson's r: -0.32, p < 0.01, NO₃ – NH₄: Pearson's r: -0.26, p < 0.01, n = 142-144).

Locally, nutrient concentrations deviated from those measured at other stations within the same island. For example, location 7 in Bonaire had ~4 times higher average daytime DIN concentrations (0.527 μ mol/L DIN) than the island's average of 0.144 \pm 0.029 (SD) μ mol/L DIN). Station 7 was located close to both the oil transfer terminal and an inland bay outlet (Goto) which could both be responsible for the observed high DIN values at this site. While the average daytime DIN concentration in Bonaire (excluding station 7) was lower (22%), it was not significantly different (Mann-Whitney U Test, p = 0.77) compared to that of the surface waters around the more

densely populated island Curação ($0.184 \pm 0.045 \,\mu\text{mol/L}$). The outlet of the bay where Curação's capital, harbor and refinery are located (Schottegat, station 23) also had a high average DIN concentration ($0.443 \,\mu\text{mol/L}$ DIN of which $0.333 \,\mu\text{mol/L}$ was comprised of NO₃) which was nearly 2-fold higher compared to stations elsewhere on the island. The most densely populated island, Aruba, had the highest average DIN and PO₄ concentrations in its surface waters (Tab. 1). When exposed stations, i.e., those exposed to the trade wind driven waves (stations 14,16, 21, 22, 24), were compared to all other stations along the islands' leeward shores no differences in nutrient concentrations for the 3 depth zones (Tab. 1) could be detected (Mann-Whitney U Test, p> 0.31).

Chlorophyll a. Chlorophyll a (Chl-a) distributions across depth differed among islands (Fig. 7). In Bonaire, most Chl-a profiles showed a gradual increase with depth in the mixed surface layer followed by a steep increase below the top of the pycnocline, i.e., around ~60 m, representing the deep chlorophyll maximum (DCM, Fig. 7a). The DCM coincided with the highest concentrations of NO₂ across the depth range sampled (Fig. 6). Below the DCM, Chl-a concentrations decreased with depth to less than 0.2 µg/L below 100 m depth (Fig. 7). Average Chl-a concentrations in the mixed surface layer are higher in Curação and Aruba compared to Bonaire (KW-Test, p< 0.05). This difference was foremost caused by a high abundance of Chl-a between depths up to ~ 50m at some of Curação's leeward side, i.e., stations 17, 19, 23 which correspond to respectively a known upwelling area (Santa Cruz), a watershed harboring the island's landfill and the opening of the Schottegat where Curação's capital, harbor, and refinery are located (Sandin et al., 2022). The DCM at these three sites was also less pronounced (Fig. 7b). The general high abundance of Chl-a. measured at the 2 stations in Aruba (Fig. 7c) is likely the result of the island's thinner mixed surface layer (Fig. 2c), caused by the island's shallow bathymetry (Fig. 1) or its closer proximity to upwelling areas along the South American mainland (Rueda-Roa and Müller-Karger, 2013).

Chl-*a* concentrations are often used to identify areas experiencing nutrient pollution, i.e., eutrophication. While threshold values are often debated, we assumed a conservative eutrophication threshold of 0.2 µg/L for tropical marine ecosystems (following e.g., Bell et al., 2014) to assess whether signs of eutrophication were present at certain stations. Based on this assumption, widespread eutrophication of the mixed surface layer (CSW) was found, i.e., in Bonaire at stations 2, 3, 5, 6, 7, 10, 13 and 14, along the SW coast of Curaçao, from station 23 (outlet main harbor) downstream to stations 1, 19, 17, 16, and in Aruba (stations 24, 25, Fig. 7).

The limit of the photic zone, i.e., where sun light reaches 1% of its value at the surface was on average deepest in Bonaire (63 m \pm 8 SD) and decreased towards Curação (57 m \pm 7 SD) and Aruba (47 m \pm 11 SD) based on measurements taken during our cruise.

Spatio-temporal variation in water composition near Kralendijk. Based on repeated measurements taken in the mixed surface layer at nearby stations (all near Kralendijk, the capital of Bonaire, Fig. 1d), a simultaneous thinning of the mixed surface layer, upward movement of the thermocline and widening of the halocline was observed whereby the DCM followed the upward movement of the pycnocline (Fig. 8). The pycnocline rose from ~55 m to ~34 m depth between January 26 (pm) and January 29 (am), followed by a drop of ~14 m on January 29 and 30 (Fig. 8). The upward movement of the pycnocline caused increases in Chl-a in shallower surface waters and likely also in nutrient concentrations as water from depths just below 50 m had higher nutrient concentrations (except NH₄+) compared to shallower water masses at this location (Tab. 1).

Discussion

The shallow waters (i.e., above the pycnocline) around the ABC islands had a relatively low salinity and high temperature (Fig. 2) typical of the westward flowing Caribbean current in this

area (Johns et al., 2002). Beneath the surface layer, Subtropical Under-Water (SUW) was found, which was characterized as water with a salinity S > 37 along the 25.4 isopycnal in the θ -S diagram (Fig. 3). This pattern of stratification is consistent with observations for water of South Atlantic origin from the nearby coasts of Venezuela (Hernández-Guerra and Joyce, 2000) and Colombia (Correa-Ramirez et al., 2019). Spatial differences in water composition within and among islands were foremost evident in the surface layer (i.e., < ~50m) as CTD casts showed largely similar water for the SUW (e.g., the same θ -S pattern) around all islands. The presence of distinct mixing regimes based on the stable water isotope data (i.e., of surface water and SUW and SUW and South Atlantic water, Fig. 5) was consistent with the presence of these three water types. While isotope studies to date have focused primarily on ¹⁸O isotopes as a proxy for paleoseawater conditions (Jentzen et al., 2018; McConnell et al., 2009), the clear depth dependent relationship between δ ²H and S (Fig. 5) suggests that ²H could also be a suitable tracer for Atlantic waters in the Caribbean Sea in addition to other tracers like chlorinated fluorocarbons (Joyce et al., 2001).

Spatial variation in water mass composition and stratification

On the leeward side of Bonaire, the water column above the pycnocline was characterized by a uniform salinity and temperature (Fig. 2a). However, at the more exposed tips/sides of the island and particularly the windward, northern side, the surface waters, particularly station 14, showed an increased resemblance to the Caribbean Surface Water (CSW) found north of 13°N as indicated by the open symbols in the θ -S diagram (Fig. 3). To a lesser extent this was also the case for Curação suggesting that both islands are located near the southern boundary of the CSW. Higher salinities compared to typical values observed for CSW suggest that both islands are in close proximity to the Southern Caribbean Upwelling System (Torres et al., 2023). The systematic increase in salinity of the surface water towards the west around the islands confirms the presence of a salinity gradient in the southern Caribbean Sea caused by the decreasing

influence of freshwater runoff from the South American continent, especially the resulting from the Orinoco River (Andrade and Barton, 2005; Chollett et al., 2012). This river's outflow is greatest near the end of the rainy season (Torres et al., 2023), i.e., during our cruise in January, and salinities decrease is a westward direction due to horizontal and vertical mixing and by local air–sea fluxes (Jury, 2018; Müller-Karger et al., 1989; Torres et al., 2023).

Sea water temperatures were lower on average along the islands' leeward coasts and likely caused by seasonal upwelling, which occurs along the Venezuelan coast between November and May (Astor et al., 2003; Jury, 2018; Müller-Karger et al., 1989) and/or internal tidal bores that are known to occur in the area (Leichter et al., 1998). In Aruba, the surface water layer was not as clearly identifiable as along Bonaire and Curaçao, and SUW was already present at depths less than 60 m possibly. The shallower bathymetry separating Aruba from the South American continent likely promotes vertical mixing of water masses around the island relative to Curaçao and Bonaire that are surrounded by deep oceanic water (Fig. 1).

Variations in stratification and undulations of the pycnocline

Haloclines, thermoclines, and pycnoclines were always found in the transition layer from the mixed surface layer (CSW) to the SUW, i.e., between depths of ~30 and 75 m depending on location and date of sampling. Variation in depths at which the composition of water in the first 100 m of the water column changes can be caused by local differences in bathymetry and oceanic processes such as internal waves (tidal waves, upwelling, Hernández-Guerra and Joyce, 2000; Leichter et al., 2006). The latter authors estimated the area's frequency of internal waves at ~0.5 cycles per day based on temperature time series data collected at Bonaire at a depth of 30 m. The internal wave that passed Kralendijk, Bonaire from 26 to 30 January (Fig. 8) undulated at an estimated ~0.2 cycles per day and moved the pycnocline from 55 to 34 m depth. These internal waves could underlie the reported short-lasting temperature drops of approximately 0.5-1°C (and up to 3°C) at depths of around 50 m on reefs at the leeward side of Curaçao and Bonaire (Bak

et al., 2005; Bongaerts et al., 2015; Gast et al., 1998; Leichter et al., 2006; Vermeij and Bak, 2003). With subsurface waves, the SUW also carries nutrient rich waters (Fig. 6) higher up into the photic zone supplying primary producers with NO₃ and PO₄, probably enhancing primary production in mixed surface water down to ~40-75 m depth (~1% of surface irradiation/incident light). This structuring effect of upwelling on algal communities on coral reefs has also been reported from nearby Colombia (Diaz-Pulido and Garzon-Ferreira, 2002). In Bonaire and Curaçao, the shallower section of this depth range (around ~40 m depth) was historically locally dominated by dense communities of the brown algae *Lobophora* (Van den Hoek et al., 1978; Van Den Hoek et al., 1975). The (historical) absence of this species in shallower reef sections could have been limited by the availability of nutrients brought up from deeper waters by upwelling and internal waves. If upward transport of nutrients does not occur, they appear to support a dense phytoplankton community at depths around ~ 70 m as evidenced by the occurrence of the DCM at these depths (Fig. 7).

Nutrients and Chlorophyll a

Nutrient profiles (particularly NO₃ and PO₄) around the ABC islands measured during our cruise were typical for (sub)tropical oligotrophic waters with nutrient limitation of primary producers in the mixed surface water layer and a DCM below the top of the pycnocline. Profiles at Aruba slightly differed from this general pattern in that nutrient and Chl-*a* concentrations were higher compared to Curaçao and Bonaire suggesting a more eutrophied status (Tab. 1, Figs. 6 and 7). From the pycnocline downwards nutrient concentrations of NO₃ and PO₄ increased around all islands. The increase in nitrite just below pycnocline (nitrite concentrations >0.04 μmol/L) most likely resulted from light limitation of phytoplankton in the DCM leading to a surplus of NH₄, (through mineralization), which is used by nitrifiers that oxidize NH₄ to NO₂ (Zakem et al., 2018). Interestingly, NO₂ concentrations from the pycnocline down to 80 m were highest in Bonaire, particularly at depths between 60 and 90 m in front of its capital Kralendijk (up to 0.140 μmol/L)

where dense benthic cyanobacterial mats occur (Becking and Meesters, 2014). These deep mats might also be a source of NH₄ fueling nitrifiers in the overlying water (Brocke et al., 2015a; Rippka, 1972).

DIN and PO₄ concentrations in mixed surface waters (CSW) measured offshore remained below some commonly proposed threshold values of eutrophication (1.0 μmol/L and 0.1 μmol/L respectively (e.g., Bell et al., 2007). Nutrient measurements taken in shallower (<18 m) water closer to shore and above reef systems in the past often exceeded these same threshold values (e.g., Gast et al., 1999; Gast et al., 1998; Lapointe and Mallin, 2011). These authors reported DIN concentrations of ~1 μmol/L or more in 1994/1995 and from 2006 to 2008 along the leeward coasts of Curação and Bonaire, often close to areas with dense coastal development. From 2011 to 2013 Slijkerman et al. (2014) found DIN concentrations > 1 μmol/L along the reef drop off (~5-17 m depth) in Bonaire often related to coastal-based pollution near the island's capital. In contrast, PO₄ concentrations in Curação and Bonaire have only exceeded eutrophication thresholds in a few sites in the past (e.g., Gast et al., 1999; Gast et al., 1998; Slijkerman et al., 2014). PO₄ concentrations along Bonaire were on average higher than along more densely populated Curação, similar to observations made in 2006-2008 by Lapointe and Mallin (2011).

General differences among the islands in reef condition could be related to differences in DIN/DIP ratios. DIN:DIP ratios were lowest (mean 6.3 ± 2.2 SD) in Bonaire, the island with the highest average coral cover at 10 m depth, i.e., 21 % (de Bakker et al., 2019). Average DIN:DIP ratios ~were 3 times higher on the other islands (range: 14 - 19) and exceeded values needed for productive coral growth (Wiedenmann et al., 2013). The mean abundance of corals on these islands is also lower than in Bonaire, i.e. 16 % for Curaçao (Sandin et al., 2022) and 6 % for Aruba (Vermeij et al., 2019). High DIN:DIP ratios in the CSW in Aruba and Curaçao suggest ineffective N sanitation (removal of inorganic N by nitrification and denitrification through sewage treatment) and/or more profound nitrogen influx via submarine groundwater discharge. In a comparison of groundwater composition among the ABC islands, van Sambeek et al. (2000) reported a

considerably lower median NO₃ concentration at Bonaire than at Curação (4.6 vs. 30.6 mg/L, respectively, data not available for Aruba). Possible occurrence of submarine groundwater discharge carrying less nitrate to coastal water bodies in Bonaire compared to Curação could explain the observed differences in N:P ratios between these islands. In contrast to measurements taken closer to shore, and while our survey period was short and threshold values can be considered subjective, the fact that we did not encounter DIN concentrations exceeding aforementioned threshold values in the more offshore surface waters around the ABC islands (ranges: 0.104 - 0.762 and 0.002 - 0.039 μmol/L respectively) strongly suggests that nutrient enrichment (e.g., from terrestrial sources) foremost affects the waters (and organisms therein) close to shore and quickly dissipates as one moves farther offshore, either through usage by benthic and water column organisms or offshore advection.

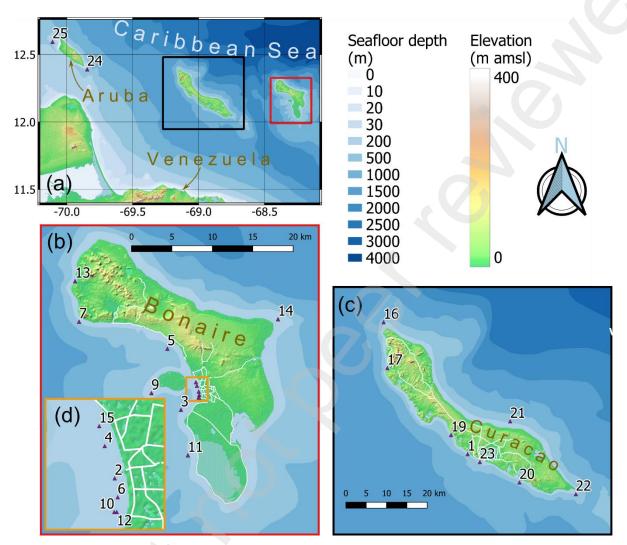
Locations characterized by high DIN concentrations included locations with (heavily) developed shorelines. Examples include station 7 (0.527 µmol/L, Wecua Point, Bonaire) located west of a large inland bay (Goto) and an oil transshipment terminal, stations 19 and 23 located respectively near the outlets of watershed harboring the island's landfill and a large, industrialized harbor located in the center of Curação's capital Willemstad (0.433 µmol/L, Sandin et al., 2022) and station 25 in Aruba located near beaches with dense tourist infrastructure (0.762 µmol/L, Vermeij et al., 2019). Elevated nutrients could also be related to natural processes such as natural upwelling (station 17 in Curação, Sandin et al., 2022).

While inorganic nutrient concentrations often remained below threshold values indicating eutrophication, Chl-a concentrations commonly exceeded the applied eutrophication threshold of 0.20 µg/L. Elevated Chl-a concentrations were observed in the surface waters at stations in the vicinity and downstream of the main urbanized areas in Curação and Bonaire, near the oil transshipment terminal on Bonaire and in Aruba. Land-based forms of pollution commonly result in local increases in Chl-a concentrations that generally decrease with increasing distance from shore (e.g., Torregroza-Espinosa et al., 2021) including in Bonaire and Curação (Lapointe and

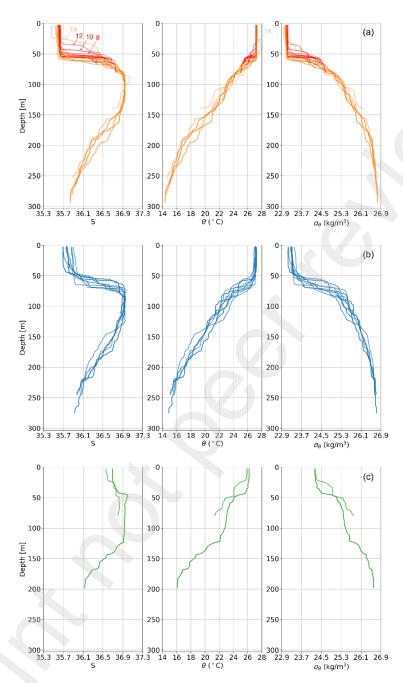
Mallin, 2011). This would suggest that most excess nutrients in our study system are rapidly taken up by coastal phytoplankton and algae (Corredor, 1979, den Haan et al., 2016). Rather than by increases of their abundance in the water column, the higher than natural presence of nutrients therefore foremost appeared as increases in the abundance of their consumers, i.e., phytoplankton (using Chl-a abundance as a proxy), and fleshy algae that have increased in abundance in Curação and Bonaire over recent decades (Jackson et al., 2013).

The daytime increase in Chl-a abundance with depth in the mixed surface layer and its steep increase towards the DCM around 50 to 65 m depth and subsequent drop to less than 0.2 µg/L at 80-90 m depth (Fig. 7) can result from changes in phytoplankton physiology (e.g., fluorescence yield, photoadaptation) or net population growth, which includes grazing by zooplankton (Campbell and Vaulot, 1993; Marra, 1997; Moeller et al., 2019). Chlorophyll profiles based on in vivo fluorescence must therefore be interpreted with some caution, but it is interesting to note the temporal increase in Chl-a and nitrate concentrations in the mixed surface water in front of Kralendijk between January 26 and 30 (Fig. 8). The increased abundance of Chl-a and nitrate coincided with the passing of a large amplitude, low frequency internal wave, as suggested from the ~21 m upward movement of the pycnocline over a ~3-day period (Fig. 8). Shoaling of internal waves between Bonaire and a nearby small island (Klein Bonaire) and between Aruba and Venezuela are likely given the shallow depths of the water masses that separate them (i.e., ~90 and ~190 m depth respectively). The passage of an internal wave can have increased the availability of nutrients in the photic zone, directly by nutrient enhanced upwelled water and/or the concentration of land-derived nutrients in a now thinner surface layer. Bonaire and Klein Bonaire are surrounded by smooth gently sloping sandy plains at depths where the DCM occurs. The seafloor here is covered by extensive and dense meadows of benthic cyanobacteria (Becking and Meesters, 2014) and on shallow reefs the supply of organic (algal) matter is known to stimulate the growth and extension of these cyanobacterial mats (Brocke et al., 2015b; Ford et al., 2018). Analogously, the high abundance of organic material associated with the DCM could

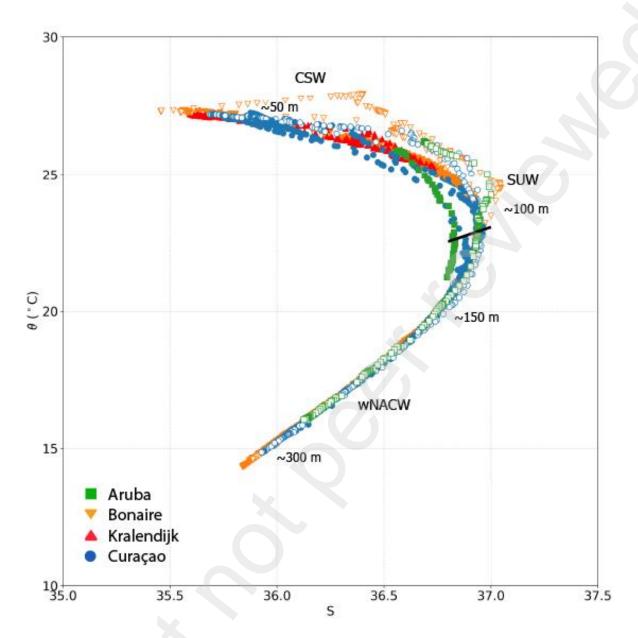
provide an explanation for the high abundance of cyanobacterial mats that are present at these sites. This example again illustrates how differences in water stratification in combination with local bathymetry can shape local benthic assemblages,

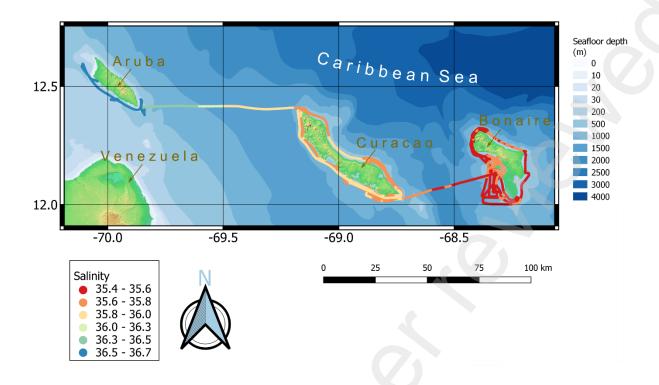

Conclusion

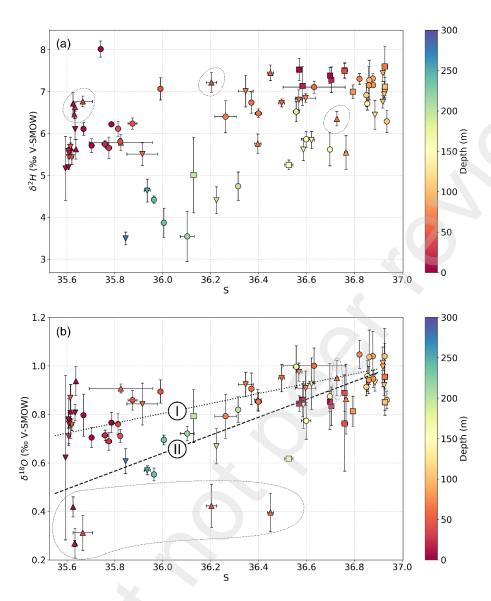
In this study, we described the vertical composition of the water masses surrounding the ABC islands in the Southern Caribbean to a depth of ~300 m. The general stratification of a ~50 m thick water layer of Caribbean Surface Water (CSW) on top of the North Atlantic Subtropical Under-Water with a mixing zone between depths of 50 and 80 m was observed. This confirmed a largely similar stratification of waters observed in nearby Venezuela (Hernández-Guerra and Joyce, 2000) and Colombia (Correa-Ramirez et al., 2019), but also elsewhere in the Caribbean, e.g., the US Virgin Islands (Seijo-Ellis et al., 2019). This general stratification can be affected by local bathymetry as for example the shallower bathymetry surrounding Aruba forces a thinning of the CSW around this island. Furthermore, local signs of eutrophication were observed near areas with extensive forms of coastal development (e.g., cities, harbors, dense tourism infrastructure). In such areas indications of eutrophication were foremost noticeable as increased abundances in phytoplankton (estimated as Chl-a abundance) instead of increases in nutrient concentrations.

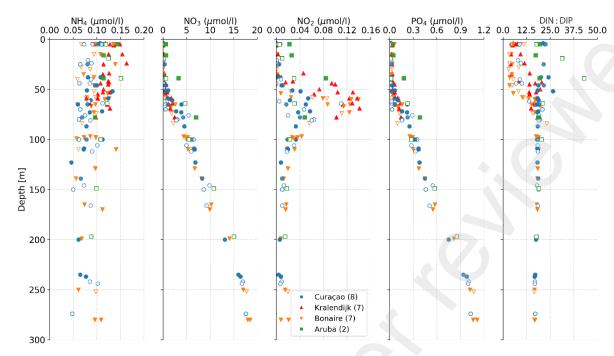

Acknowledgements

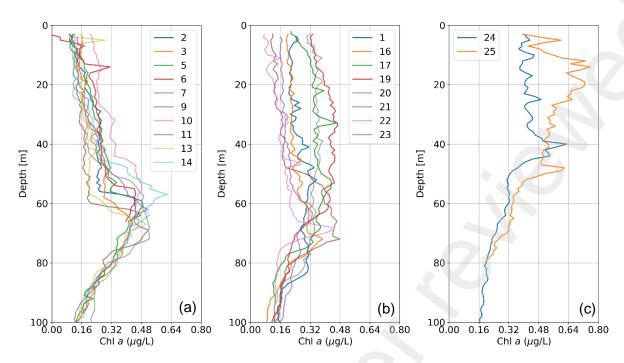
For this paper we acknowledge the funding of the Netherlands Organization for Scientific Research (NWO) and Royal Netherlands Institute for Sea Research (NIOZ) in organizing the Netherlands Initiative Changing Oceans (NICO) expedition in 2018. We thank National Marine Facilities -NIOZ (NMF) and the crew of the RV Pelagia for their helpfulness and logistic support. We are extremely grateful to Karel Bakker for conducting all nutrient measurements onboard of the Pelagia. MJAV was partly supported through the project "Land, Sea, and Society: Linking terrestrial pollutants and inputs to nearshore coral reef growth to identify novel conservation options for the Dutch Caribbean (SEALINK)" with project number NWOCA.2019.003 of the research program "Caribbean Research: a Multidisciplinary Approach" which is (partly) financed by the Dutch Research Council (NWO).


Figure captions


Fig. 1. (a) Location of the ABC Islands with sites surveyed in Aruba (a) and maps with sites surveyed at Curaçao (b), and Bonaire (c) with inset indicating stations in the Kralendijk urban area (d). Note that location 12 is not shown as it overlaps with location 8. Main roads are indicated by white lines, the Bonaire salt works are indicated by the light shaded area (data © OpenStreetMap contributors, www.openstreetmap.org). Elevations based on Shuttle Radar Topography Mission data (SRTM) available from the U.S. Geological Survey. AMSL stands for "above mean sea level".


Fig. 2. Salinity (*S*), potential temperature (θ), and density ($\sigma\theta$) of water masses sampled using CTD casts at (a) Bonaire, (b) Curaçao, and (c) Aruba. Only the first 100 m are shown, values represent averages of 1 m depth intervals. The numbers of the stations that are discussed in the text are indicated in (a). Arrows with numbers point to the lines of the stations near Kralendijk (8, 10 and 12) that showed the largest vertical shift in the salinity profile and to station 14, which is discussed in detail in the main text.


Fig. 3. Potential temperature (θ) versus salinity (S) diagram. Stations on the leeward side of the islands are shown as closed symbols and on the windward side and more exposed sites as open symbols. The presence of the Caribbean Surface Water (CSW), North Atlantic Subtropical Under-Water (SUW), and western North Atlantic Central Waters (wNACW) is indicated by their abbreviations. The black line is the σ_{θ} = 25.4 kg/m³ isopycnal between 36.8 ≤ S ≤ 37 along which Subtropical Under Water sinks in deeper waters from the central Atlantic (Hernández-Guerra and Joyce, 2000).


Fig. 4. Seawater salinity measured by the shipboard equipment of the R/V Pelagia between 28 January and 2 February 2018. Source of bathymetry data http://www.dcbd.nl/document/bathymetry-map-seas-surrounding-aruba-bonaire-and-Curaçao (accessed on 9 October 2018).

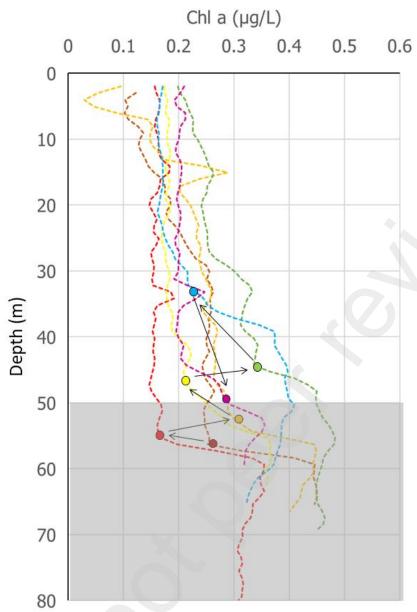

Fig. 5. (a) The relationship between δ^2H and (b) $\delta^{18}O$ values and seawater salinity. Salinity was derived from the CTD casts. Vertical error bars represent the standard deviation of the isotope measurement, horizontal error bars are the standard deviation of the salinity measurement (representing the variability encountered during the time it took to flush the Niskin bottles). The lines in (b) represent the regression line for (I) surface seawater water samples at Puerto Rico reported by Watanabe et al. (2001) and (II) samples up to 250 m depth in the Cariaco Basin (Venezuela) in February 2006 reported by McConnell et al. (2009). The values of station 12 are encircled by dotted lines. Symbols: ○ Curaçao; Δ Bonaire/Kralendijk; ▼Bonaire other stations; □ Aruba.

Fig. 6. Nutrient (NH₄, NO₃, NO₂, and PO₄) concentrations and DIN:DIP ratios (N:P) versus depth for all stations. The high concentration of NH₄ (0.479 μmol/L) at 5m depth at station 7 is not shown. Colors denote the individual islands, with the samples taken offshore Kralendijk on Bonaire indicated separately. The number between parentheses in the legend indicates the number of stations per color category. Open symbols denote stations occurring in windward or exposed locations, whereas closed symbols are for stations located on the leeward side of the islands.

Fig. 7. Depth profiles of chlorophyll *a* concentration on basis of daytime fluorescence measurements. (a) Bonaire (between 12:00 and 20:00h LT), (b) Curação (between 7:00 and 19:00h LT), and (c) Aruba (between 7:00-14:00h LT). For the location of station numbers see Figure 1.

Fig. 8. Depth profiles for Chl-*a* concentrations near Kralendijk between January 26 and 30 2018. The circles mark the depth of the top of the pycnocline. The area indicated in grey denotes the approximate depth below which certain nutrient concentrations at this site are elevated compared to shallower (< 50 m) waters (see Tab. 1).

Tables

Table 1. Water masses categorized by island and depth zone with characteristics of their nutrient concentrations.

		PO_4 (µmol/L)		NH ₄ ₍ µmol/L)		NO_2 (µmol/L)		NO_3 (µmol/L)		DIN: DIP	
Island	depth zone	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD
Aruba	0-50m	0.05	0.06	0.13	0.02	0.03	0.03	0.92	1.18	24.75	10.34
Aruba	51-100m	0.30	0.08	0.11	0.01	0.03	0.01	5.74	1.19	20.08	1.24
Aruba	101-300m	0.71	0.20	0.09	0.01	0.02	0.00	12.90	3.03	18.34	0.91
Bonaire	0-50m	0.03	0.01	0.12	0.05	0.01	0.03	0.12	0.17	8.09	4.94
Bonaire	51-100m	0.11	0.06	0.10	0.02	0.10	0.04	1.70	1.23	16.47	3.17
Bonaire	101-300m	0.70	0.32	0.09	0.03	0.02	0.01	11.99	5.17	17.69	0.83
Curaçao	0-50m	0.02	0.01	0.09	0.02	0.00	0.00	0.17	0.18	21.26	27.35
Curaçao	51-100m	0.16	0.11	0.09	0.02	0.04	0.02	2.91	2.07	19.02	2.27
Curaçao	101-300m	0.63	0.29	0.07	0.02	0.01	0.01	10.91	4.66	17.87	0.73

References

Abtmaier, B.F., 1978. Zur Hydrogeologie der Insel Curaçao (Niederländische Antillen). Groundwaterinvestigation - Curaçao Facultät für Bergbau und Hüttenwesen. Rheinische-Westfälischen Hochschule Aachen, Aachen, p. 177.

Adam, T.C., Burkepile, D.E., Holbrook, S.J., Carpenter, R.C., Claudet, J., Loiseau, C., Thiault, L., Brooks, A.J., Washburn, L., Schmitt, R.J., 2021. Landscape-scale patterns of nutrient enrichment in a coral reef ecosystem: implications for coral to algae phase shifts Ecological Applications 31, e2227.

Andrade, C.A., Barton, E.D., 2005. The Guajira upwelling system. Continental Shelf Research 25, 1003-1022.

Arboleda, E., Peachey, R.B., 2016. A study of water quality parameters of a selection of wells in Bonaire,. 2016. CIEE Research Station, Bonaire p. 58.

Astor, Y., Müller-Karger, F., Scranton, M., 2003. Seasonal and interannual variation in the hydrography of the Cariaco Basin: implications for basin ventilation. Continental Shelf Research 23, 125-144.

Bak, R.P., Nieuwland, G., Meesters, E.H., 2005. Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curação and Bonaire. Coral Reefs 24, 475-479.

Becking, L., Meesters, E., 2014. Bonaire deep reef expedition I. IMARES Wageningen UR, Report C006/14. IMARES, Wageningen UR

Bell, P.R., Lapointe, B.E., Elmetri, I., 2007. Reevaluation of ENCORE: Support for the eutrophication threshold model for coral reefs. AMBIO: A Journal of the Human Environment 36, 416-424.

Bell, P.R.F., Elmetri, I., Lapointe, B.E., 2014. Evidence of Large-Scale Chronic Eutrophication in the GreatBarrier Reef: Quantification of Chlorophyll a Thresholds for Sustaining Coral Reef Communities. AMBIO 43, 361-376.

Bongaerts, P., Frade, P., Hay, K., Englebert, N., Latijnhouwers, K., Bak, R., Vermeij, M., Hoegh-Guldberg, O., 2015. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coralendosymbiont community. Scientific Reports 5

Brocke, H.J., Polerecky, L., De Beer, D., Weber, M., Claudet, J., Nugues, M.M., 2015a. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs. PlosOne 10, 19.

Brocke, H.J., Wenzhoefer, F., De Beer, D., Mueller, B., Van Duyl, F.C., Nugues, M.M., 2015b. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Scientific Reports 5, 8852.

Campbell, L., Vaulot, D., 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Research Part I: Oceanographic Research Papers 40, 2043-2060.

Casanova-Masjoan, M., Joyce, T., Pérez-Hernández, M., Vélez-Belchí, P., Hernández-Guerra, A., 2018. Changes across 66°W, the Caribbean Sea and the Western boundaries of the North Atlantic Subtropical Gyre. Progress in Oceanography 168, 296-309.

Castellanos, P., Varela, R., Muller-Karger, F., 2002. Descripción de las áreas de surgencia al sur del Mar Caribe examinadas con el sensor infrarrojo AVHRR. Memoria de la Fundación La Salle de Ciencias Naturales 154, 55-76.

CBS-AU, 2022. Quarterly Demographic Bulletin 2022. Available at: https://cbs.aw/wp/index.php/2022/06/16/quarterly-demographic-bulletin-2022/

CBS-CW, 2023. Census 2023. Central Bureau of Statistics Curação, Willemstad. Available at: https://www.cbs.cw/census-of-2023

CBS-NL, 2020. Trends in the Caribbean Netherlands 2020. Available at: https://www.cbs.nl/engb/publication/2020/41/trends-in-the-caribbean-netherlands-2020

Centurioni, L., Niiler, P., 2003. On the surface currents of the Caribbean Sea. Geophysical Research Letters 30, 1279.

Cervantes-Díaz, G.Y., Hernández-Ayón, J.M., Zirino, A., Herzka, S.Z., Camacho-Ibar, V., Norzagaray, O., Barbero, L., Montes, I., Sudre, J., Delgado, J.A., 2022. Understanding upper water mass dynamics in the Gulf of Mexico by linking physical and biogeochemical features. Journal of Marine Systems 225, e103647.

Chérubin, L.M., Richardson, P.L., 2007. Caribbean current variability and the influence of the Amazon and Orinoco freshwater plumes. Deep Sea Research Part I: Oceanographic Research Papers 54, 1451-1473.

Chollett, I., Mumby, P., Müller-Karger, F., Hu, C., 2012 Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233-1244.

Correa-Ramirez, M., Rodriguez-Santana, Á., Ricaurte-Villota, C., Paramo, J., 2019. Water masses and mixing processes in the southern Caribbean upwelling system off Colombia. Ocean Science Discussions, 1-26.

Corredor, J.E., 1979. Phytoplankton response to low level nutrient enrichment through upwelling in the Columbian Caribbean Basin. Deep Sea Research Part A. Oceanographic Research Papers 26, 731-741.

Corredor, J.E., Morell, J.M., 2001. Seasonal variation of physical and biogeochemical features in eastern Caribbean Surface Water. Journal of Geophysical Research: Oceans 106, 4517-4525.

De'ath, G., Fabricius, K., 2010. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications 20, 840-850.

De Bakker, D.M., van Duyl, F.C., Perry, C.T., Meesters, E.H., 2019. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Global change biology 25, 4092-4104.

DeGeorges, A., Goreau, T.J., Reilly, B., 2010. Land-sourced pollution with an emphasis on domestic sewage: lessons from the Caribbean and implications for coastal development on Indian Ocean and Pacific coral reefs. Sustainability 2, 2919-2949.

Den Haan, J., Huisman, J., Brocke, H.J., Goelich, H., Latijnhouwers, K.R., Van Heeringen, S., Honcoop, S.A.S., Bleyenberg, T.E., Schouten, S., Cerli, C., Hoitinga, L., Vermeij, M.J.A., Visser, P.M., 2016. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse. Scientific Reports 6, 28821.

Diaz-Pulido, G., Garzon-Ferreira, J., 2002. Seasonality in algal assemblages on upwelling-influenced coral reefs in the Colombian Caribbean. Botanica Marina 45, 284-292.

DMA, 2019. Climate Data Aruba. Available at: http://www.meteo.aw/climate.php

Fabricius, K.E., 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine pollution bulletin 50, 125-146.

Ford, A.K., Bejarano, S., Nugues, M.M., Visser, P.M., Albert, S., Ferse, S.C.A., 2018. Reefs under Siege—the Rise. Putative Drivers, and Consequences of Benthic Cyanobacterial Mats. Front Mar Sci 5, 18.

Frade, P.R., Bongaerts, P., Baldwin, C.C., Trembanis, A.C., Bak, R.P.M., Vermeij, M.J.A., 2019. Bonaire and Curaçao, in: Loya, Y., Puglise, K.A., Bridge, T.C.L. (Ed.), Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? . Springer International, Cham., pp. 149-162.

Fratantoni, D.M., 2001. North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters. Journal of Geophysical Research 106, 22067-22093.

Gast, G.J., Jonkers, P.J., van Duyl, F.C., Bak, R.P.M., 1999. Bacteria, flagellates and nutrients in island fringing coral reef waters: influence of the ocean, the reef and eutrophication. Bull. Mar. Sci. 65, 523-538.

Gast, G.J., Wiegman, S., Wieringa, E., Duyl, F.C.v., Bak, R.P.M., 1998. Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar. Ecol. Prog. Ser. 167, 37-45.

Gyory, J., Mariano, A.J., Ryan, E.H., 2009. The Caribbean Current. Ocean Surface Currents. Available at: http://oceancurrents. rsmas. miami. edu/caribbean/caribbean. html.

Häder, D.P., Banaszak, A.T., Villafañe, V.E., Narvarte, M.A., González, R.A., Helbling, E.W., 2020. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of the Total environment. 713, 136586.

Hernández-Guerra, A., Joyce, T.M., 2000. Water masses and circulation in the surface layers of the Caribbean at 66°W Geophysical Research Letters 27, 3497-3500.

Hummelinck, P.W., 1943. Over grotten en grottenvorming op Curaçao, Aruba en Bonaire. De West-Indische Gids 25, 365-375.

Hydes, J., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson, A.G., Grosso, O., Kerouel, R., van Ooijen, J., Sato, K., Tanhua, T., Woodward, E.M.S., Zhang, J.Z., 2010. Determination of dissolved nutrients (N, P, Si) in seawater with high precision and inter-comparability using gassegmented continuous flow analysers (GO-SHIP Repeat Hydrography Manual: A collection of Expert Reports and Guidelines). ICPO Publication Series No. 123, version 1 IOCCP Report No. 14, .

Jackson, J., Donavan, M., Cramer, K., Lam, V., 2013. Status and Trends of Caribbean Coral Reefs: 1970-2012, CEP Technical Report. IUCN, UNEP, p. 303.

Jentzen, A., Nürnberg, D., Hathorne, E., Schönfeld, J., 2018. Mg/Ca and δ¹⁸O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits. Biogeosciences 15, 7077-7095.

Johns, W., Townsend, T., Fratantoni, D., Wilson, W., 2002. On the Atlantic inflow to the Caribbean Sea Deep Sea Research Part I: Oceanographic Research Papers 49 211-243.

Joyce, T., Hernández-Guerra, A., Smethie Jr., W., 2001. Zonal circulation in the NW Atlantic and Caribbean from a meridional World Ocean Circulation Experiment hydrographic section at 66°W. Journal of Geophysical Research: Oceans 106, 22095-22113.

Jury, M., 2018 Eastern Venezuela coastal upwelling in context of regional weather and climate variability. Regional Studies in Marine Science 18, 219-228.

Lapointe, B.E., Mallin, M., 2011. Nutrient enrichment and eutrophication on fringing coral reefs on Bonaire and Curaçao, Netherlands Antilles. Report. Available at: https://www.dcbd.nl/document/nutrient-enrichment-and-eutrophication-fringing-coral-reefs-bonaire-and-cura%C3%A7ao-netherlands

Lapointe, B.E., O'Connell, J.D., Garrett, G.S., 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochemistry 10, 289-307.

Leichter, J.J., Helmuth, B., Fischer, A.M., 2006. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. Journal of Marine Research 64, 563-588.

Leichter, J.J., Shellenbarger, G., Genovese, S.J., Wing, S.R., 1998. Breaking internal waves on a Florida (USA) coral reef: a plankton pump at work. Mar. Ecol Prog. Ser. 166, 83-97.

Marra, 1997. Analysis of diel variability in chlorophyll fluorescence. Journal of Marine Research 55, 767-784.

McConnell, M., Thunell, R., Lorenzoni, L., Astor, Y., Wright, J., Fairbanks, R., 2009. Seasonal variability in the salinity and oxygen isotopic composition of seawater from the Cariaco Basin, Venezuela: Implications for paleosalinity reconstructions. Geochemistry, Geophysics, Geosystems 10, 15.

McCook, L., 1999. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral reefs 18, 357-367.

McManus, J.W., Polsenberg, J.F., 2004. Coral–algal phase shifts on coral reefs: ecological and environmental aspects Progress in Oceanography 60, 263-279.

MDC, 2023. The Dutch Leeward Islands, Willemstad. Availabe at: https://www.meteo.cw/climate.php?Lang=Eng&St=TNCC&Sws=R11

Metcalf, W.G., 1976. Caribbean-Atlantic water exchange through the Anegada-Jungfern passage. Journal of Geophysical Research 81, 6401-6409.

Moeller, H.V., Laufkötter, C., Sweeney, E.M., Johnson, M.D., 2019. Light-dependent grazing can drive formation and deepening of deep chlorophyll maxima. Nature Communications 10, 1978..

Moosdorf, N., Stieglitz, T., Waska, H., Dürr, H., Hartmann, J., 2015. Submarine groundwater discharge from tropical islands: a review. . Grundwasser 20, 53-67.

Morrison, J., Nowlin, W., 1982. General distribution of water masses within the eastern Caribbean Sea during the winter of 1972 and fall of 1973. Journal of Geophysical Research: Oceans 87, 4207-4229.

Müller-Karger, F., McClain, C., Fisher, T., Esaias, W., Varela, R., 1989. Pigment distribution in the Caribbean sea: Observations from space Progress in Oceanography 23, 23-64.

Nelson, S.T., 2000. A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Commun. Mass Spectrom. 14, 1044–1046.

Pawlowicz, R., 2010. What every oceanographer needs to know about TEOS-10 (The TEOS-10 Primer). Unpublished manuscript. Available at www.TEOS-10.org.

Polaszek, T., Lacle, F., van Beukering, P., Wolfs, E., 2018. The Economics of Ecosystems and Biodiversity, Aruba (Updated version), Amsterdam. Available at: https://www.wolfscompany.com/wpcontent/uploads/2018/04/TEEB-Aruba-Main-Report.pdf

Qu, T., Zhang, L., Schneider, N., 2016. North Atlantic Subtropical Underwater and its year-to-year variability in annual subduction rate during the Argo Period. Journal of Physical Oceanography 46, 1901-1916.

Rippka, R., 1972. Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Arch. Mikroiol. 87 93–98.

Rueda-Roa, D., Müller-Karger, F., 2013. The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. . Deep Sea Research Part I: Oceanographic Research Papers 78, 102-114.

Sandin, S.A., Alcantar, E., Clark, R., de León, R., Dilrosun, F., Edwards, C.B., Estep, A.J., Eynaud, Y., French, B.J., Fox, M.D., 2022. Benthic assemblages are more predictable than fish assemblages at an island scale. Coral reefs 41, 1031-1043.

Schmutz, P., Potter, A., Modlin Jr, A., 2017 Aruba, Bonaire, and Curaçao, in: Allen, C. (Ed.), Landscapes and Landforms of the Lesser Antilles. Springer International Publishing Cham., pp. 293-317.

Seijo-Ellis, G., Lindo-Atichati, D., Salmun, H., 2019. Vertical structure of the water column at the Virgin Islands shelf break and trough. Journal of Marine Science and Engineering 7, 74.

Skirving, W., Marsh, B., De La Cour, J., Liu, G., Harris, A., Maturi, E., Geiger, E., Eakin, C.M., 2020. CoralTemp and the coral reef watch coral bleaching heat stress product suite version 3.1. Remote Sensing 12, 3856.

Slijkerman, D.M.E., De Leon, R., De Vries, P., 2014. A base-line water quality assessment of the coastal reefs of Bonaire, Southern Caribbean. Mar Poll Bull 86, 523-529.

Suchley, A., Alvarez-Filip, L., 2018. Local human activities limit marine protection efficacy on Caribbean coral reefs. Conservation Letters 11, e12571

Szmant, A.M., 2002. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25, 743-766.

Torregroza-Espinosa, A.C., Restrepo, J.C., Escobar, J., Pierini, J., Newton, A., 2021. Spatial and temporal variability of temperature, salinity and chlorophyll-a in the Magdalena River mouth, Caribbean Sea. Journal of South American Earth Sciences 105, 102978.

Torres, R.R., Latandret, S., Salon, J., Dagua, C., 2023. Water masses in the Caribbean Sea and sub-annual variability in the Guajira upwelling region. Ocean Dynamics 73, 39-57.

Van den Hoek, C., Breeman, A.M., Bak, R., Van Buurt, G., 1978. The distribution of algae, corals and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing coral reef of Curaçao, Netherlands Antilles. Aquatic Botany 5, 1-46.

Van Den Hoek, C., Cortel-Breeman, A., Wanders, J., 1975. Algal zonation in the fringing coral reef of Curaçao, Netherlands Antilles, in relation to zonation of corals and gorgonians. Aquatic Botany 1, 269-308.

Van den Oever, F., 2000. Aruba- a geochemical baseline study. Netherlands Journal of Geosciences 79, 467-477.

Van der Lely, J.A.C., van Beukering, P., Muresan, L., Cortes, D.Z., Wolfs, E., Schep, S., 2013. The total economic value of nature on Bonaire. IVM Institute for Environmental Studies, Amsterdam. Available at: https://books.google.com/books/about/The_Total_Economic_Value_of_Nature_on_Bo.html?id=XR6KoAE ACAAJ

Van Duyl, F.C., 1985. Atlas of the living reefs of Curação and Bonaire (Netherlands Antilles). Studies of the flora and fauna of Surinam and the Netherlands Antilles 117, 1-37.

Van Duyl, F.C., Gast, G.J., 2001. Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplankton growth with different coral reef water types. Aquat. Microb. Ecol. 24, 17-24.

Van Sambeek, M.H., Eggenkamp, H.G.M., Vissers, M., 2000. The groundwater quality of Aruba, Bonaire and Curação: a hydrogeochemical study. Geologie en Mijnbouw 79, 459-466.

Vermeij, M.J.A., Bak, R.P.M, 2003. Species-specific population structure of closely related coral morphospecies along a depth gradient (5–60 m) over a Caribbean reef slope. Bulletin of Marine Science 73, 725-744.

Vermeij, M.J.A., Marhaver, K.L., Estep, A.J., Sandin, S., 2019. The State of the Reefs around Aruba, Report for the Government of Aruba. Carmabi Foundation, Willemstad, p. 211. Available at: https://www.dcbd.nl/sites/default/files/documents/Aruba%20Report%20Final%20%281%29.pdf

Waitt Institute, 2016. Economic Valuation of Curaçao's Marine Resources, p. 50. Available at: https://www.dcbd.nl/document/economic-valuation-cura%C3%A7ao%E2%80%99s-marine-resources

Watanabe, T., Winter, A., Oba, T., 2001. Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Marine Geology 173, 21-35.

Wear, S.L., Thurber, R.V., 2015. Sewage pollution: mitigation is key for coral reef stewardship. Annals of the New York Academy of Sciences 1355, 15-30.

Westermann, J., 1949. Overzicht van de mijnbouwgeologische kennis der Nederlandse Antillen, Meded. Kon. Ver. Indisch Instituut, Amsterdam, pp. 1-168.

Wiedenmann, J., D'Angelo, C., Smith, E.G., Hunt, A.N., Legiret, F.-E., Postle, A.D., Achterberg, E.P., 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change 3, 160-164.

Wüst, G., 1963. On the stratification and the circulation in the cold watersphere of the Antillean-Caribbean basins An Abstract Deep Sea Research and Oceanographic Abstracts 10, 165–187.

Zakem, E.J., Al-Haj, A., Church, M.J., van Dijken, G.L., Dutkiewicz, S., Foster, S.Q., Fulweiler, R.W., Mills, M.M., Follows, M.J., 2018. Ecological control of nitrite in the upper ocean. Nature Communications 9, 1206.