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1  |  INTRODUC TION

For species with temperature-dependent sex determination (TSD) 
there is concern that with climate warming the sex produced at 

warmer temperatures will increasingly dominate until eventually 
highly skewed populations may occur leading to population extinc-
tion (e.g. Booth et al., 2021; Jensen et al., 2018; Katselidis et al., 2012; 
Roberts et al., 2023). Sea turtles are a well-studied group that exhibit 
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Abstract
Climate warming and the feminization of populations due to temperature-dependent 
sex determination may threaten sea turtles with extinction. To identify sites of height-
ened risk, we examined sex ratio data and patterns of climate change over multi-
ple	decades	for	64	nesting	sites	spread	across	the	globe.	Over	the	last	62 years	the	
mean	change	in	air	temperature	was	0.85°C	per	century	(SD = 0.65°C,	range = −0.53	
to +2.5°C, n = 64	nesting	sites).	Temperatures	increased	at	40	of	the	64	study	sites.	
Female-skewed	hatchling	or	 juvenile	sex	ratios	occurred	at	57	of	the	64	sites,	with	
skews >90% female at 17 sites. We did not uncover a relationship between the ex-
tent of warming and sex ratio (r62 = −0.03,	p = .802,	n = 64	nesting	sites).	Hence,	our	
results suggest that female-hatchling sex ratio skews are not simply a consequence 
of recent warming but have likely persisted at some sites for many decades. So other 
factors aside from recent warming must drive these variations in sex ratios across 
nesting sites, such as variations in nesting behaviour (e.g. nest depth), substrate (e.g. 
sand albedo), shading available and rainfall patterns. While overall across sites recent 
warming is not linked to hatchling sex ratio, at some sites there is both is a high female 
skew	and	high	warming,	 such	as	Raine	 Island	 (Australia;	99%	 female	green	 turtles;	
1.27°C warming per century), nesting beaches in Cyprus (97.1% female green turtles; 
1.68°C	warming	per	century)	and	in	the	Dutch	Caribbean	(St	Eustatius;	91.5%	female	
leatherback turtles; 1.15°C warming per century). These may be among the first sites 
where management intervention is needed to increase male production. Continued 
monitoring of sand temperatures and sex ratios are recommended to help identify 
when high incubation temperatures threaten population viability.
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TSD with males being produced at low incubation temperatures and 
females at high temperatures and hence there are concerns that cli-
mate warming may lead to all-female populations (Santidrián Tomillo 
& Spotila, 2020). Furthermore, at warmer temperatures there is high 
mortality of turtle embryos which provides an additional threat with 
climate warming (Hays et al., 2017; Santidrián Tomillo et al., 2012).	In	
light of these concerns, a large number of studies have estimated sex 
ratios being produced at nesting beaches through histological exam-
ination of sacrificed hatchlings (King et al., 2013;	Patrício	et	al.,	2017), 
by estimating hatchling sex ratios from temperature models (Fuentes 
et al., 2009; Laloë, Monsinjon, et al., 2020), or by assessing sex ratios 
of juveniles through blood hormone analysis (Jensen et al., 2018). 
For	example,	at	Raine	Island	(northern	Great	Barrier	Reef,	Australia),	
which hosts one of the world's largest green sea turtle populations, 
hatchling sex ratios have been estimated to be >99% female (Booth 
et al., 2020; Jensen et al., 2018). Highly female-biased hatchling sex 
ratios observed in sea turtle populations around the world (Hays 
et al., 2014) highlight the urgent need for further research to under-
stand climate change impacts on this iconic group.

Predictive	models	are	frequently	used	to	show	how	sandy-beach	
species might respond to climate change (Schoeman et al., 2014).	Air	
temperatures have repeatedly been shown to be closely linked to 
sand temperatures at sea turtle nest depth, including studies at nest-
ing	beaches	in	Ascension	Island	(South	Atlantic;	Hays	et	al.,	2003), 
the	Chagos	Archipelago	(Indian	Ocean;	Laloë,	Chivers,	et	al.,	2021), 
in	Florida	(West	Atlantic;	Hawkes	et	al.,	2007)	and	around	Australia	
(South	Pacific;	Fuentes	et	al.,	2009, 2010).	Predictions	of	sand	tem-
peratures from sand versus air temperature models have been shown 
to be close to measured sand temperatures (Laloë et al., 2017; Laloë, 
Chivers, et al., 2021) and so air temperature has been used many 
times as a proxy for predicting likely temporal changes in mean in-
cubation temperatures at nest depths across decades (e.g. Fuentes 
et al., 2009, 2010; Hawkes et al., 2007; Jensen et al., 2018; Laloë, 
Chivers, et al., 2021). Therefore, air temperature records likely pro-
vide a good proxy for how mean incubation temperatures at nesting 
sites have changed over long periods.

Several studies have examined how incubation temperatures 
have likely changed over recent decades at sea turtles nesting sites 
(reviewed in Laloë, Chivers, et al., 2021). However, there has been no 
comprehensive examination of how incubation temperatures have 
likely changed at nesting sites across the world. Given the threats that 
rising temperatures pose for hatchling sex ratios, here we examine 
62 years	of	temperature	records	at	nesting	sites	around	the	world	to	
gauge	the	spatial	patterns	and	variability	of	temperature	increases.	In	
this way we identify where climate warming has likely been occurring 
most rapidly at sea turtle nest sites. Using hatchling and juvenile sex 
ratio estimates, we examine whether current highly skewed sex ratios 
are simply a consequence of the extent of warming over recent de-
cades or, instead, whether some populations have experienced warm 
incubation conditions and hence likely had highly skewed sex ratio for 
a	 long	time.	 In	this	way	we	gauge	whether	skewed	sex	ratios	 in	sea	
turtles are only a negative consequence of recent warming or instead 
whether they might be adaptive and have likely existed for a long time.

2  |  MATERIAL S AND METHODS

2.1  |  Sex ratios

We assembled data on sea turtle hatchling sex ratios from published 
sources	by	searching	the	Thomson	Reuters	ISI	Web	of	Science™	da-
tabase. We searched for papers that included the terms ‘sea turtle’ 
and ‘sex ratio’ in the title, abstract or keywords. We performed a 
backward and forward citation search of the publications we found 
to	 identify	additional	articles.	 In	some	studies,	 the	sex	ratios	were	
measured directly through the histological observation of the hatch-
ling's gonads, while in other studies the sex ratios were estimated 
from recorded sand temperatures using the established relationship 
between	 sex	 ratio	 and	 sand	 temperature.	 In	 one	 study,	 sex	 ratios	
were estimated through endocrinology (i.e. Jensen et al., 2018). Sex 
ratio values were extracted from the sources' main text, tables or 
figures. When sex ratios estimated from histological studies and sex 
ratios estimated from temperature models were both available for a 
site, we used the sex ratio estimates from the histology study. For 
sites that had sex ratios available from different studies, we calcu-
lated a mean sex ratio. Details from the original datasets (e.g. spe-
cies, years of study and sample sizes) can be found in Tables S1 and 
S2. For each site we found we noted which sea turtle regional man-
agement unit (RMU; Wallace et al., 2010) it was in to explore if there 
were regional patterns in warming.

2.2  |  Air temperature records

We	 obtained	 air	 temperature	 records	 from	 the	 International	
Comprehensible	 Ocean–Atmosphere	 Data	 Set	 (ICOADS)	 through	
the	National	Center	for	Atmospheric	Research	(http:// rda. ucar. edu/ 
datas ets/ ds540.1/ ).	 ICOADS	 is	 the	world's	most	extensive	surface	
marine meteorological data collection and offers records spanning 
from	1662	to	the	present.	Data	sources	range	from	moored	buoys	to	
surface	drifters	and	research	vessels.	We	used	the	Enhanced	ICOADS	
Monthly Summary Statistics Release 3.0.0 to obtain temperatures 
between	January	1960	and	December	2022.	We	extracted	air	tem-
peratures for the 4° by 4° quadrats that encompass the sea turtle 
sites	 for	which	we	obtained	 sex	 ratio	 data.	 Previous	 studies	 from	
nesting sites across the world have shown that air temperatures in 
the 4° by 4° quadrats reflect sand temperatures at nest depth at 
nesting sites (e.g. Esteban et al., 2016; Hays et al., 2003) and typi-
cally	a	1°C	increase	in	air	temperature	equates	to	a	0.86°C	increase	
in sand temperature at nest depth (Laloë, Chivers, et al., 2021). We 
obtained air temperatures for 1° by 1° boxes and calculated a mean 
monthly air temperature for each 4° by 4° quadrat weighing values 
by the number of observations in each 1° by 1° quadrat. We excluded 
from our analysis monthly means that were based on <10 observa-
tions, as is commonly done in similar studies (Fuentes et al., 2009; 
Hays et al., 2003). Hereafter ‘mean monthly air temperature’ refers 
to the mean of the mean air temperature for each month within the 
nesting window.
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Nesting	season	information	were	extracted	from	the	published	
literature for each study site. For each site we calculated the mean 
air temperature during the nesting season, as well as the mean air 
temperature of the month in the middle of the nesting season.

2.3  |  Statistical analyses

To	 examine	 if	 air	 temperatures	 changed	 over	 the	 past	 62 years	
(i.e.	 between	 1960	 and	 2022),	 we	 used	 the	 time-slice	 approach	
where we compared temperatures between two eras (e.g. Cubasch 
et al., 1995). We calculated the mean monthly air temperatures 
during	 the	 nesting	 season	 from	1960	 to	1969	 and	 from	2013	 to	
2022 at each site to provide information on multidecadal changes. 
We then used a t-test to compare temperatures between these 
two eras. To account for the potential variation in nesting phenol-
ogy across nesting sites, we ran the same analysis using the mean 
air temperature of the month in the middle of the nesting season 
for each site.

To explore if warming was linked to the latitude of each nesting 
site we built a second-order polynomial model with one quantitative 
predictor. ‘Degree latitude’ was entered as the predictor variable and 
‘air	 temperature	 difference	 between	 1960–1969	 and	 2013–2022’	
was	 entered	 as	 the	 response	 variable.	 In	 addition,	we	 explored	 if	
some regions (i.e. sea turtle RMUs) warmed more than others using 
an	ANOVA	and	Tukey's	HSD	test.

We plotted ‘female sex ratio’ against ‘air temperature difference 
between	 1960–1969	 and	 2013–2022’	 and	 performed	 Pearson's	
product–moment	correlation	test	to	uncover	the	potential	relation-
ship between the two variables. To account for differences between 
species,	we	also	separated	data	by	species	and	performed	Pearson's	
product–moment	correlation	tests	if	enough	data	were	available	for	
a species (i.e. n ≥ 9).

All	figures	and	tables	present	air	temperature	warming	between	
1960–1969	and	2013–2022,	unless	stated	otherwise.	For	easy	com-
parison with other studies, we estimated ‘warming per century’ by 
multiplying	‘warming	between	1960–1969	and	2013–2022’	by	1.89.	
All	 statistical	analyses	were	carried	out	 in	R	version	4.0.3	 (R	Core	
Team, 2020).

3  |  RESULTS

We obtained estimates of hatchling or juvenile sex ratios and air 
temperature	records	between	1960	and	2022	for	64	nesting	sites	
spread across the world and across all seven sea turtle species 
(Figure 1). However, we appreciate that some sites are close to-
gether and so likely not independent (Table S1). We obtained data 
from 31 loggerhead rookeries, 14 green rookeries, nine leatherback 
rookeries, five hawksbill rookeries, three olive ridley rookeries, one 
Kemp's ridley rookery and one flatback rookery.

The median number of observations used to calculate mean 
air	temperature	at	a	study	site	was	12,673	(range = 534	to	63,782,	
n = 64)	for	1960–1969	and	15,473	(range = 262	to	1,133,304,	n = 64)	
for	 2013–2022.	We	 found	 statistically	 significant	 differences	 be-
tween	mean	monthly	air	temperatures	from	1960	to	1969	and	mean	
monthly air temperatures from 2013 to 2022 at 40 sites (p < .05	
for	 40	 of	 64 t-tests).	 At	 these	 40	 sites	 air	 temperature	 increased	
between	 1960	 and	 2022,	 with	 the	 mean	 warming	 being	 0.65°C	
(SD = 0.27,	range = 0.20	to	1.3°C,	p < .05,	n = 40).	This	warming	trans-
lates	 to	a	 rate	of	1.22°C	per	century	 (SD = 0.51°C,	 range = 0.38	 to	
2.5°C, p < .05,	n = 40).	Across	all	sites	(i.e.	including	sites	at	which	no	
statistically significant differences were noted), mean warming was 
0.45°C	(SD = 0.35,	 range = −0.28	to	+1.32°C, p < .05,	n = 64),	which	
translates	to	a	rate	of	0.85°C	per	century	(SD = 0.65°C,	range = −0.53	
to +2.5°C, p < .05,	n = 64).

There was a marked variation across sites in the extent of air 
temperature warming (Figure 2a–d; Figure S1), with warming being 
maximal	 at	 Kuriat	 Island	 (Tunisia;	 2.49°C	 warming	 per	 century)	
where	loggerhead	turtles	nest,	and	lowest	at	Pirambu	Beach	(Brazil;	
0.38°C warming per century), which also hosts a loggerhead rook-
ery. Some of this variation in warming between sites was linked to 
latitude, with warming tending to be less near the equator and more 
at higher latitudes (r2 = 0.21,	F2,61 = 8.106,	p < .01,	n = 64).	Sites	in	the	
temperate zone generally warmed nearly twice as fast as sites in the 
tropics, but considerable residual variation remained (Figure S2).

An	 ANOVA	 revealed	 that	 some	 regions	 (i.e.	 sea	 turtle	 RMUs)	
warmed more than others (F7,56 = 9.145,	p < .01).	 Tukey's	HSD	 test	
showed that, in general, sites in the Mediterranean have warmed the 
most,	followed	by	sites	in	the	South	Pacific.	There	were	no	significant	

F I G U R E  1 Sites	around	the	world	with	
hatchling/juvenile sex ratios estimates 
and multidecadal air temperature records. 
Female-skewed hatchling/juvenile sex 
ratios are widely reported across the 
world. Red points indicate sites that 
report	female-biased	sex	ratios	(≥50%	
female) and blue points indicate male-
biased sex ratios (>50%	male).	Note	
that some points are offset to increase 
legibility. The turtle images were kindly 
provided	by	NOAA	Fisheries	(www. fishe 
ries. noaa. gov).
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differences in warming for the remaining regions (F5,37 = 1.614,	
p = .181).

There was no relationship between the most recent sex ratio es-
timate	and	the	extent	of	warming	over	the	past	62 years	(r62 = −0.03,	
p = .802),	that	is,	sites	that	had	experienced	the	most	marked	warm-
ing did not always have the most extreme female bias in sex ratio 
(Figure 3).	In	addition,	there	was	no	relationship	between	sex	ratio	
and warming when data were separated by species (for loggerheads: 
r29 = −0.22,	p = .238;	for	greens:	r12 = 0.47,	p = .09;	for	leatherbacks:	
r7 = −0.10,	p = .790;	Figure S3).	In	other	words,	the	most	extreme	sex	
ratio skews do not seem to simply be the result of extreme warming 

in	the	past	62 years.	For	example,	at	Buck	Island	(US	Virgin	Islands)	
there	has	been	relatively	little	warming	(0.64°C	per	century)	but	still	
a marked female bias in hatchling sex ratio (94.1% female). The im-
plication is that some sites were likely warm and producing mainly 
females	even	60+ years ago. However, in other cases highly skewed 
female sex ratios co-occurred with high warming such as at Raine 
Island	 (Australia;	 99%	 female	 green	 turtles;	 1.27°C	 per	 century	
warming)	 and	Wan-An	 Island	 (Taiwan;	 93%	 female	 green	 turtles;	
1.40°C	per	 century	warming).	At	 some	 sites	 there	were	 relatively	
balanced	sex	ratio	and	relatively	little	warming	over	the	last	62 years,	
including	Sandy	Point	(US	Virgin	Islands;	66.6%	female	leatherbacks;	
0.64°C	per	century	warming),	Tortuguero	(Costa	Rica;	67%	female	
greens;	0.30°C	per	century	warming)	and	Rancho	Nuevo	 (Mexico;	
57.5% female Kemps ridleys; 1.23°C per century warming). We 
reached the same broad conclusions of the relative differences in 
warming across sites if we simply looked at the month in the middle 
of	the	nesting	season	between	eras.	In	other	words,	our	conclusions	
are not dependent on the exact definition of the start and end of the 
nesting season across sites.

4  |  DISCUSSION

Although	warming	has	been	previously	reported	at	individual	nest-
ing sites (e.g. Jensen et al., 2018, 2022;	Patrício	et	al.,	2019; Turkozan 
et al., 2021), our study shows increasing temperatures across ocean 

F I G U R E  2 (a–d)	Examples	of	air	temperature	records	since	
1960.	Each	plot	shows	mean	monthly	air	temperature	during	the	
sea turtle nesting season across years. The vertical bars to the 
right	indicate	the	mean ± standard	deviation	of	air	temperatures	for	
1960–1969	and	2013–2022.
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F I G U R E  3 There	is	no	direct	relationship	between	current	
hatchling/juvenile sex ratios and the amount of warming a site has 
experienced	over	the	past	62 years	(r62 = −0.03,	p = .802).	Sex	ratios	
were estimated using histological data (filled circles), in-nest sand 
temperatures (open circles) or endocrinology (filled square). The 
dashed lines represent the mean values for each variable. The top-
right shaded box highlights sites of conservation concern where 
both high female biases and high warming are recorded (Table S1). 
Sites presented in Figure 2 and in the main text are indicated (1: 
Raine	Island,	Australia;	2:	St	Eustatius,	Dutch	Caribbean;	3:	Kuriat	
Island,	Tunisia;	4:	Pirambu,	Brazil;	5:	Buck	Island,	US	Virgin	Islands;	
6:	Wan-An	Island,	Taiwan;	7:	Sandy	Point,	US	Virgin	Islands;	8:	
Tortuguero,	Costa	Rica;	9:	Rancho	Nuevo,	Mexico;	10:	La	Escobilla,	
Mexico;	11:	Ascension	Island,	British	Overseas	Territory;	12:	Diego	
Garcia,	Chagos	Archipelago;	13:	Boa	Vista,	Cape	Verde;	14:	Guriri	
Beach,	Brazil;	15:	Archie	Carr	National	Wildlife	Refuge,	USA;	16:	
Dalyan, Turkey; 17: Zakynthos, Greece).
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basins and across different species, reiterating concerns over 
warming that have been expressed at individual rookeries. Due to 
the close relationship between air temperature and sand tempera-
ture at nest depth (Fuentes et al., 2009; Hawkes et al., 2007; Hays 
et al., 2003; Jensen et al., 2018; Laloë, Chivers, et al., 2021), our key 
finding of generally rising air temperatures at nesting sites around 
the	world	 over	 the	 last	 62 years	 suggests	 that	 sand	 temperatures	
at nest depths have likely also risen by about the same extent. The 
mean	extent	of	warming	that	we	reported	across	64	sites	(0.85°C	per	
century)	is	consistent	with	the	Intergovernmental	Panel	on	Climate	
Change	 (IPCC)	 reports	 that	 global	 surface	 temperatures	 have	 in-
creased	by	about	1°C	over	the	last	century	(IPCC,	2021). However, 
underlying this average rate of warming our study reveals a picture 
of	considerable	variation	 in	warming	across	sites	 (range = −0.53	 to	
+2.5°C per century), which may have important conservation im-
plications. We found that warming increased at higher latitudes; a 
pattern similar to that reported in climatological studies (Ballantyne 
et al., 2010; Gaskell et al., 2022). For example, it is well known that 
areas	near	the	Arctic	are	warming	faster	than	areas	near	the	equator	
(IPCC,	2021; Walsh, 2014) and this higher-than average warming is 
having profound impact for species such as polar bears (Ursus mar-
itimus)	in	the	Arctic	where	warming	is	associated	with	loss	of	sea	ice	
(Wunderling et al., 2020).	Our	findings	revealed,	for	the	first	time,	
this same general pattern of reduced warming at low latitudes for 
sea turtle rookeries.

Similarly, our result that sites in different sea turtle RMUs expe-
rienced different warming is consistent with climatology studies that 
have shown that ocean basins are warming at different rates (Wang 
et al., 2018).	 Our	 sites	 that	 experienced	 the	 most	 warming	 were	
found in the Mediterranean, which is known to be a climate change 
‘hotspot’ (Giorgi, 2006).	 Interestingly,	 the	Mediterranean	 region	 is	
warming at a rate similar to the global mean in winter and spring, but 
at a much higher rate in summer and autumn (Lionello & Scarascia, 
2018), which is when turtles typically nest in the region. Knowing 
which sea turtle RMUs are warming the most may help identify 
sites not included in our study and where conservation intervention 
might be needed in the future to lower sand temperatures (Table S1).

Our	results	are	broadly	consistent	with	focal	studies	at	individ-
ual nesting sites. For example, we report warming similar to that 
reported	 previously	 at	Ascension	 Island	 (Hays	 et	 al.,	2003), Raine 
Island	 (Jensen	 et	 al.,	 2018),	 the	 Chagos	 Archipelago	 (Hays	 et	 al.,	
2021)	and	the	Cape	Verde	Islands	(Laloë	et	al.,	2014), even though 
different methodologies were used in each of these studies. By ap-
plying the same methodology across all sites, our work allows the 
relative extent of recent warming across sea turtle nesting sites to 
be	 gauged.	 As	 such,	 our	work	may	 help	 identify	 key	 areas	where	
management intervention might be required to avoid severe hatch-
ling sex ratio skews. While highly skewed hatchling sex ratios in a 
population do not necessarily lead to highly skewed adult sex ratios 
(Hays et al., 2014), populations with currently highly female-biased 
hatchling sex ratios are likely to see lower levels of hatchling pro-
duction as incubation conditions change with climate warming (Hays 
et al., 2017).

There are clearly uncertainties and limitations when trying 
to quantify biological responses under a scenario of rapid climate 
change (Rangwala et al., 2021). We have shown that the extent of 
recent warming is not the cause of current sex ratio skews in sea tur-
tles. Rather these sex ratio skews might be driven by differences be-
tween species and populations in nesting behaviour (e.g. nest depth; 
Bentley et al., 2020) microhabitat selection (e.g. shading available; 
Esteban et al., 2016) or variations in substrate (e.g. sand albedo; Hays 
et al., 2001), and rainfall patterns (Laloë, Tedeschi, et al., 2021). More 
details on these various factors might help tease apart the drivers of 
variations in hatchling sex ratios across populations. Furthermore, 
the adaptive capacity (e.g. microevolution; Tedeschi et al., 2016) of 
populations is unclear.

Scenarios of complete hatchling feminization will most likely be 
seen at sites that have (i) a current high female skew in hatchling pro-
duction,	(ii)	high	warming	and	(iii)	current	high	temperatures.	In	this	
regard,	Raine	Island	is	of	particular	concern	since	estimates	of	cur-
rent hatchling production are >99% female (Jensen et al., 2018) and 
there	is	appreciable	warming.	However,	even	at	Raine	Island,	where	
hatchling sex ratios are >99% female, there is still no evidence of egg 
infertility (Booth et al., 2021). Given that our analysis indicates that 
Raine	Island	lies	towards	the	extreme	of	hatchling	sex	ratio	skew	and	
recent warming, it is likely that issues of egg infertility, as a result of 
a lack of males, may not currently be an issue at the vast majority 
of nesting sites around the world. Hence, impacts of female-biased 
hatchling sex ratios may not yet be an issue needing management 
intervention to produce more males. However, as climate warming 
increases	 and	 accelerates	 (NOAA,	2022), continued monitoring of 
egg fertility may reveal when males are so scarce that not all breed-
ing females can find a mate.

Our	work	also	helps	identify	where	feminization	of	populations	
is of low concern. For example, our comparison across sites shows 
that at Boa Vista (Cape Verde) hatchling sex ratios are not extremely 
skewed and warming has been moderate, supporting previous con-
clusions that nesting populations in Cape Verde will be resilient to 
climate	change	(Abella	Perez	et	al.,	2016; Laloë et al., 2014). Cape 
Verde hosts one of the largest loggerhead turtle rookeries in the 
world (Hays et al., 2022; Laloë, Cozens, et al., 2020).	 Other	 very	
large and likely climate-resilient nesting sites identified in our anal-
ysis include Tortuguero (Costa Rica; leatherbacks and green turtles) 
and	the	state	of	Espírito	Santo	(Brazil;	loggerhead	turtles).	The	likely	
resilience of these sites adds to the generally reported ‘good news’ 
for many sea turtle nesting sites around the world where nesting 
numbers are increasing (Mazaris et al., 2017).

There has been long-term consideration of whether TSD is 
adaptive or is simply an ancestral form of sex determination with no 
current adaptive significance (Mrosovsky, 1994; Shine, 1999). Some 
have suggested that TSD is not adaptive, however, it has also been 
proposed that sea turtles might generally benefit from producing 
more female than male hatchlings for several reasons. First, having 
more females may increase the per capita reproductive output of 
populations thereby allowing increased growth when females are in 
excess (Mazaris et al., 2017). Second, there is now strong theoretical 
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(Santidrián Tomillo, 2022) and empirical (Hays et al., 2010) evidence 
that adult male turtles breed more frequently than females and 
hence female-skewed hatchling sex ratios may be required in order 
to produce balanced operational (breeding) sex ratios.

It	 might	 be	 argued	 that	 sites	 with	 an	 extreme	 female	 bias	 in	
hatchling production are simply a consequence of high recent 
warming.	If	this	were	the	case,	we	would	predict	a	strong	relation-
ship between the extent of warming and current hatchling sex ratio 
estimates. However, this was not the case. For example, highly fe-
male-biased hatchling sex ratios occur at some sites that have expe-
rienced	little	warming	in	recent	decades,	such	as	at	the	Archie	Carr	
National	Wildlife	Refuge	(USA)	which	hosts	one	of	the	largest	log-
gerhead nesting assemblages in the world (Ehrhart et al., 2014) and 
where we detected no significant warming. This evidence points to 
female-skewed hatchling sex ratios having existed at some sites, in-
cluding highly successful sea turtle rookeries, prior to recent warm-
ing, and supports the suggestion that moderate biases in female 
production	may	be	adaptive.	In	addition,	some	sites	with	relatively	
balanced sex ratios have experienced some extreme warming. This 
was the case in Dalyan (Turkey), one of the most important reproduc-
tive sites for loggerheads in the Mediterranean, where histological 
data	revealed	55.6%	female-biased	sex	ratios	 (Sarı	&	Kaska,	2015) 
and we detected high warming (i.e. 1.93°C per century).

Our	 analyses	 also	 highlight	 that	 there	 is	 considerable	 inter-
annual thermal variability within sites. With regard to sex ratios, 
this may indicate that even when a population may be producing 
predominantly one sex in most years at a site, there can still be 
occasional	years	when	the	other	sex	 is	produced.	 In	 this	manner,	
interannual thermal variability may drive the continued production 
of males over time (e.g. decades), but not consistently every year. 
Thus, production of male sea turtles might follow similar pattern as 
that seen in fisheries, where rare but highly successful recruitment 
events sustain the population (Beaugrand et al., 2003).	In	support	
of this theory is the fact that sea turtles are long lived, so males 
produced in a particularly cool year may sustain a population for 
several decades thereafter (Hays et al., 2022).	 It	 is	worth	 noting	
that for some of our study sites, it is possible that sex ratio esti-
mates were made during such an atypically cool year, so that the 
sex ratios from those studies do not reflect overall population sex 
ratio accurately. However, since the majority of sex ratio estimates 
come from multiple years of study (Table S2), this is unlikely to be a 
major issue in our analysis.

The temperature time series present in our study extends sev-
eral	decades.	Over	such	long	periods,	it	might	be	argued	that	phe-
nological shifts in the timing of nesting might mitigate warming, that 
is, as air and sand temperatures increase, so turtles might shift to 
nesting	at	a	cooler	time	of	year	(e.g.	Almpanidou	et	al.,	2018; Mazaris 
et al., 2008, 2009, 2013). However, several studies suggest that 
the pace of phenological shifts in nesting by sea turtles is insuffi-
cient	to	fully	mitigate	rising	temperatures	(Almpanidou	et	al.,	2018; 
Blechschmidt et al., 2020; Laloë & Hays, 2023). Sea turtles could po-
tentially adapt to warming temperatures through a combination of 
behavioural changes, such as by selecting cooler sites (e.g. shaded) 

within their nesting beaches (Topping & Valenzuela, 2021) or by col-
onizing new nesting areas (Santidrián Tomillo et al., 2023).

In	 conclusion,	 our	 findings	 show	 general	 warming	 across	 sea	
turtle	nesting	 sites,	with	 temperatures	warming	 at	40	of	64	 sites.	
Female-skewed hatchling or juvenile sex ratios were found at 57 
of	 the	 64	 sites.	 However,	 even	 where	 both	 female-hatchling	 sex	
ratio skews and warming are high, there are no issues with a lack of 
males	causing	egg	infertility.	Our	analysis	did	not	detect	a	relation-
ship	between	sex	ratio	and	extent	of	warming	over	the	last	62 years,	
suggesting that female-hatchling sex ratio skews are not simply a 
consequence of recent warming but may have persisted at some 
sites for many decades and hence may be adaptive. However, while 
moderate female-hatchling sex ratio skews may help population 
growth rates, continued monitoring of egg survival and sand tem-
peratures are recommended to identify the tipping point at which 
high incubation temperatures threaten population viability.
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