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Abstract 
 
Evolutionary tradeoffs between life-history strategies are central to animal evolution. However, because 
microbes can influence aspects of host physiology, behavior, and resistance to stress or disease, changes 
in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals 
provide a highly biodiverse and data-rich host system to test this idea, made more relevant by increases in 
coral disease outbreaks as a result of anthropogenic changes to climate and reef ecosystems. Identifying 
factors that determine coral disease susceptibility has therefore become a focus for reef conservation 
efforts. Using a comparative approach, we tested if coral microbiomes correlate with disease 
susceptibility across 425 million years of coral evolution by combining a cross-species coral microbiome 
survey (the “Global Coral Microbiome Project”) with long-term disease prevalence data at multiple sites. 
Interpreting these data in their phylogenetic context, we show that microbial dominance and composition 
predict disease susceptibility. We trace this dominance-disease association to a single putatively 
beneficial bacterial symbiont, Endozoicomonas, whose relative abundance in coral tissue explained 30% 
of variation in disease susceptibility and 60% of variation in microbiome dominance across 40 coral 
genera. Conversely, Endozoicomonas abundances in coral tissue strongly correlated with high growth 
rates. These results demonstrate that the evolution of microbial symbiosis in corals correlates with both 
disease prevalence and growth rate. Exploration of the mechanistic basis for these findings will be 
important for our understanding of how microbial symbiosis influences animal life-history tradeoffs, and 
in efforts to use microbes to increase coral growth or disease resistance in-situ. 
 
Significance Statement 
 
The evolution of tropical corals, like that of many organisms, involves tradeoffs in life-history strategy. 
We sought to test whether microbes influence coral life-history traits. Comparative data from a census of 
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modern coral microbes, combined with long term disease surveys in three regions, provide evidence for a 
correlation between microbiome structure, growth rate, and disease susceptibility during coral evolution.  
These trends were driven primarily by changes in the relative abundance of  Endozoicomonas in coral 
tissue microbiomes, suggesting the novel hypothesis that Endozoicomonas may allow corals to grow 
more quickly at the cost of greater vulnerability to disease. Thus, symbiosis with microbes may be an 
important aspect of animal life-history strategy. 
 
Introduction 
 
Tradeoffs in life-history strategy are key features in animal evolution (1, 2). These tradeoffs often involve 
differential investments in life-history traits such as growth rate (3); reproductive maturation, timing, and 
fecundity (4); or resistance to stress (5), predation (6) or disease (7). The fitness costs and benefits of 
these investments are often context-dependent. Thus, shifts in ecological or environmental conditions can 
favor some life-history strategies over others (5), sculpting trait evolution within animal lineages and 
reshaping ecological communities. Global climate change is shifting the patterns and prevalence of 
disease in many animal taxa, while increasing the virulence of some pathogens (8, 9). Identifying 
evolutionary tradeoffs and resulting trait correlations associated with disease susceptibility (10) can 
therefore help predict how species survival will shift with climate change.   
 
Although much research on evolutionary tradeoffs focuses on the traits of animals themselves, it is also 
well documented that the physiology (11), fitness and even behavior (12) of many animals are influenced 
by their microbiomes. Ecological microbiome surveys and laboratory experiments using germ-free 
animals have linked animal microbiomes, and specific symbionts within them, to multiple key life-history 
traits, including growth (13), development rate (13), fecundity (13), stress resistance (11, 14), and disease 
susceptibility (14). It therefore seems likely that microbial symbiosis is an important aspect of animal life-
history tradeoffs.  
 
If microbes do influence life-history traits (or vice versa), microbiome structure and membership may 
correlate with those traits over long periods of animal evolution. However, testing the potential relevance 
of microbial symbiosis for life-history strategy over evolutionary time periods is challenging. These tests 
must use phylogenetic comparative methods that account for trait correlations induced by the shared 
history of traits over evolution. They further require large cross-species datasets on both animal traits and 
microbiome structure. Scleractinian corals meet these data requirements and are therefore an animal 
lineage that present a unique opportunity to answer the question of whether microbes and life-history 
strategies are associated. 
 
The reef-building corals that have evolved over 425 million years represent a diverse group of animals, 
including an estimated >1600 species (15), with an extensive fossil record, and a well-known variety in 
both life-history strategy (2) and microbial symbiosis (16–18). These animals also have special ecological 
and societal importance, as corals are foundational to reef ecosystems that support some of the most 
biodiverse assemblages on the planet. These ecosystems in turn support the livelihoods of the many 
coastal communities that rely on them for food, coastal protection, and recreation (19). Yet the ancient 
diversity of coral reefs is currently threatened by global climate change, which is driving both dramatic 
mass bleaching events and increased prevalence and severity of disease outbreaks (8). Due to the threats 
to coral reef ecosystems, and the potential harm that their collapse could inflict on millions of people in 
coastal communities worldwide, corals and their microbiomes have been intensively researched.  
 
Association with specific dinoflagellate symbionts (e.g., Duruisdinium vs. Cladocopium) has been 
reported to have complex and species-specific influences on coral traits such as thermal tolerance and 
growth rate ((20) but see (21)). Evolutionary studies have demonstrated that vertical vs. horizontal 
transmission of these dinoflagellate symbionts is tied to important host traits, such as reproduction by 
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brooding vs. spawning (22). However, potential influences of symbiosis with bacteria and archaea on 
coral life-history traits are less well understood.  
 
Coral microbiome research has demonstrated that in the present-day communities of coral-associated 
bacteria and archaea (hereafter ‘coral microbiomes’) are influenced by host traits; local environmental 
factors, such as temperature, depth, nutrient availability, and turbidity; anatomy (16); and ecological 
context, such as predation, exploitation by farming fish (23), or competition with turf algae. Specific 
microbes have been shown to protect corals from pathogens through antimicrobial production (24), 
predation (25), jamming of quorum-sensing systems (26), and passive competition for space and 
resources. Differences in microbiome structure or dynamics are also often found between related species 
that show different patterns of disease susceptibility (27). These examples provide support for 
connections between coral life-history, microbiome structure and disease susceptibility in the present day, 
although they do not directly allow for statistical testing of evolutionary hypotheses. 
 
Clarifying whether microbiome structure and coral life-history traits correlate over coral evolution 
globally would provide vital context for interpreting studies of extant coral symbiosis and disease at local 
or regional scales. Several lines of research have created a strong foundation on which such 
comprehensive comparative evolutionary analyses can be built. Coral disease patterns have been 
intensively researched, and an increasing number of datasets are now openly available. Well-curated 
global databases of coral physiological traits (28), with contributions from numerous research groups, 
have been established and mapped to coral life-history strategies (2). Finally, several large cross-species 
studies of corals and their microbiomes have been launched. These advances provide an opportunity to 
compare host trait data and microbiome structure from across the coral tree of life. 
 
Here, we test whether microbiome structure correlates with coral disease susceptibility, growth rate, or 
overall life-history strategy. To address this question quantitatively, we first characterized the microbiome 
composition from visibly healthy samples of 40 coral genera using 16S rRNA gene sequencing results 
from the Global Coral Microbiome Project (16)(Supplementary Data Table 1a), and subsequently 
combined these data with genus-level long-term disease prevalence data from several tropical regions 
around the globe (the Caribbean (Florida Reef Resilience Project data (FRRP, https://frrp.org/)), central 
Pacific (Hawai՛i Coral Disease Database (HICORDIS) (29)), and eastern Australia (this study); 
Supplementary Data Table 1b), and coral life-history traits from the Coral Trait Database (28) (Figure 1). 
With the resulting microbiome structure, disease prevalence, and coral growth data across a global 
distribution of coral genera (Supplementary Data Table 1c), we compared these traits using methods that 
account for phylogenetic correlations using a time-calibrated multi-gene reference tree of corals (30). 
 
Across coral evolution, we found that microbiome structure in healthy corals is correlated with both 
disease-susceptibility and growth rate. We further identified these correlations as being primarily driven 
by a single key bacterial genus, Endozoicomonas, a common coral symbiont that often forms aggregates 
within coral tissue (31) and is hypothesized to be a metabolic mutualist. These results provide an 
important example of long-term correlations between microbiome structure and host traits (disease 
susceptibility and growth rate), supporting the notion that microbial symbiosis can have important roles in 
mediating animal life-history tradeoffs.  
 
Results and Discussion  
 
Coral microbiomes are dominated by a small number of bacterial taxa. The microbiome of corals is 
often dominated by a few highly-abundant taxa that demonstrate species-specificity (17, 18), though why 
these highly-abundant microbial taxa differ across coral diversity is unknown. To test this, we first 
identified a restricted set of dominant bacterial or archaeal taxa in visibly healthy corals retrieved from 
mucus, tissue, and skeleton samples of 40 coral genera. (‘Dominant taxa’ were defined as those that are 
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most abundant on average within all samples from a given portion of coral anatomy in a given coral 
genus.) Thirty-eight of the coral genera were dominated by the bacterial classes 𝛼- or γ-proteobacteria, 
which are are known to include common coral associates (17), with further detailed taxonomic resolution 
revealing that the number of dominant bacterial and archaeal genera across compartments also remained 
limited (Figure 2A; Supplementary Data Table 2). For example, only 17 genera of bacteria or archaea 
accounted for the dominant microbes in the tissue microbiomes of all 40 coral genera (this number 
excludes 4 unclassified ‘genera’ that could not be classified to at least the order level). Mucus and 
skeleton showed similar trends, with only 16 and 25 dominant genera, plus 2 or 4 unclassified genera, 
respectively. Across coral genera, Pseudomonas was most commonly dominant in mucus (31.4% of coral 
genera), while Endozoicomonas was most commonly dominant in tissue (18%) and Candidatus 
Amoebophilus (13.5%) was most commonly dominant in skeleton microbiomes. Currently the influences 
of microbiome structure and  dominance of particular microbial taxa on coral physiology are not yet well 
understood. 
  
Microbiome richness and evenness do not predict disease susceptibility. To identify how bacterial 
communities are structured among globally distributed coral taxa, we characterized alpha diversity within 
the mucus, tissue, and skeleton compartments for each coral genus using several metrics. These included 
observed richness; the Gini index, which measures evenness. We visualized the evolution of each of these 
measures of microbiome alpha diversity using ancestral state reconstruction (Supplementary Figures 1a 
and 1b), then compared them against disease susceptibility using Phylogenetic Generalized Least Squares 
(PGLS) analysis. While we hypothesized that coral microbiomes high in overall biodiversity might show 
reduced disease susceptibility — analogous to the ability of more biodiverse ecosystems to resist invasive 
species (32) — neither microbiome richness nor evenness were significantly correlated with host disease 
susceptibility in phylogenetic generalized least squares analysis (PGLS richness vs. disease susceptibility: 
R2 = 0.004, p = 0.674, FDR q = 1; PGLS evenness vs. disease susceptibility R2 = 0.028, p = 0.274, FDR q 
= 1; Supplementary Data Table 3a). Some specific cases of coral genera with low microbiome richness 
and high disease susceptibility were identified (i.e., Pocillopora, Acropora, and Montipora; 
Supplementary Figure 1a & b) but there was no overall trend across all genera surveyed (Figure 2B). 
Thus, microbiome richness or evenness alone does not predict coral disease susceptibility. 
 
Microbiome dominance correlates with coral disease susceptibility. Given that neither microbiome 
richness nor evenness significantly predicted disease susceptibility, and that cross-species differences in a 
limited number of dominant microbes were very notable in the data, we hypothesized that corals with 
highly abundant bacterial taxa might display more disease vulnerability. To quantify this, ecological 
dominance among identified ASVs was calculated using Simpson’s Index, which estimates the 
probability that two species drawn from a population belong to the same group, and thereby incorporates 
aspects of both richness and evenness simultaneously. We correlated Simpson’s Index against coral 
disease prevalence for either all coral samples, or those in mucus, tissue, or skeleton considered 
individually. In coral tissue, microbiome dominance significantly correlated with disease, explaining 
roughly 27% of overall variation in disease susceptibility across coral species (PGLS: R2 = 0.27, p = 
0.0006, FDR q = 0.025; Supplementary Data Table 3a; Supplementary Figure 1c). No other combination 
of alpha diversity measure and compartment correlated with disease after accounting for multiple 
comparisons (Figure 2B). Thus, microbiome dominance as measured by Simpson’s Index was a far 
stronger predictor of coral disease susceptibility than 𝛼-diversity measures that considered either richness 
or evenness individually.  
 
The association between microbiome dominance and disease strengthens in regionally-matched 
data. The correlation we saw between microbiome dominance and disease persisted in a regionally-
matched comparison between disease and microbiome data, and therefore is unlikely to be driven by 
biogeographic confounders. While the trend between microbiome dominance and coral disease is 
compelling across our full dataset, not all coral diseases are cosmopolitan and some exist in only one or a 
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few locations (33). As mismatches between region and disease biogeography could confound our overall 
results, we sought to assess whether large-scale regional effects drive this trend. For example, perhaps 
high-dominance corals happen to live in high-disease areas, resulting in incidental correlations between 
dominance and disease. To test for regional effects, we repeated the PGLS analyses restricting the data to 
only coral microbiomes from Australia, where sampling was most intensive and for which we have long-
term disease datasets best-matched to the microbiome data. In this analysis, ecological dominance in 
Australian coral tissue microbiomes predicted disease prevalence even more strongly under the lowest 
AICc model (PGLS: R2 = 0.49, p = 0.00015, FDR q = 0.005). However, this correlation was strong under 
all models (Supplementary Data Table 3b). A likely explanation for this stronger result is simply that the 
disease and microbiome data were drawn from the same region in this analysis, whereas in other cases the 
available disease and microbiome data were only partially regionally matched. These stronger results in 
the Australia-only model suggest that microbiomes vary enough geographically that disease and 
microbiome data from the same location produce the clearest correlations.  
 
Beta diversity explains little variation in disease susceptibility. Animal microbiomes are often 
conceived of as having some compositions that are associated with health, and others that are dysbiotic or 
unhealthy. We sought to test whether this same microbiome beta-diversity framework could predict the 
extent to which healthy members of different coral taxa are vulnerable to disease. To do so, we correlated 
coral disease susceptibility against the top three principal coordinate (PC) axes from Weighted and 
Unweighted UniFrac analyses of microbiome beta-diversity. In contrast to the strong association between 
microbiome dominance and disease, microbial community composition had less pronounced associations 
with disease susceptibility. Weighted UniFrac PC axis 3 only nominally significantly correlated with 
disease susceptibility in all compartments, but this relationship did not remain significant after accounting 
for multiple comparisons (PGLS: R2 = 0.26, p = 0.04, FDR q = 0.90; Supplementary Data Table 4).   
 
Microbiome dominance vs. disease correlations are driven by γ-proteobacteria. Ecological 
dominance itself seems an unlikely structural property to act as a mechanism of disease resistance. 
Therefore, we investigated if this high-level summary measure reflected the effects of some specific 
microbe or set of microbes. For example, disease susceptibility among Acropora has been shown to 
correlate with the abundance of Rickettsiales in coral tissues (34, 35).  
 
To test how shifts in the dominant class of microbes in coral tissue interacted with the dominance-disease 
correlation, we repeated our previous correlations twice: once in coral genera that are 𝛼-proteobacteria 
dominated, and once in coral genera that are γ-proteobacteria dominated. Both datasets were visualized 
with ancestral state reconstruction (Supplementary Figures 2a and 2b). Correlations between microbiome 
dominance and disease were visually apparent only in reconstructions of the γ-proteobacteria dominated 
corals, and the dominance-disease correlation was far stronger in γ-proteobacteria dominated corals 
(PGLS: R2 = 0.50, p = 0.0001, FDR q =0.003; Supplementary Data Table 3c), where dominance 
explained most (50%) of the variation in disease susceptibility. In contrast, 𝛼-proteobacteria dominated 
tissue microbiomes showed no discernable dominance-disease correlations either visually or statistically 
(PGLS: R2 = 0.06, p = 0.31, FDR q = 0.81; Supplementary Data Table 3c). This suggested that overall 
dominance-disease correlations are unlikely to be driven by 𝛼-proteobacteria, but may be driven by γ-
proteobacteria or specific taxa within this bacterial class. Critically, nothing about these results 
contradicts the possibility that some 𝛼-proteobacteria are coral pathogens, parasites, or opportunists (36). 
It merely suggests that in healthy corals, dominance by 𝛼-proteobacteria does not predict the overall level 
of disease susceptibility of coral genera, whereas dominance by one or more γ-proteobacteria does.  
 
The coral symbiont Endozoicomonas drives dominance-disease correlations. Bacteria in the genus 
Endozoicomonas are among the most-studied γ-proteobacterial symbionts of corals. In several species 
Endozoicomonas forms prominent aggregates known as CAMAs (coral associated microbial aggregates) 
in coral tissue (31). In species where Endozoicomonas is common, it frequently decreases in relative 
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abundance during coral bleaching or disease (37), suggesting a commensal or mutualistic rather than 
opportunistic relationship with host health. Further, it has previously been observed that the family 
Endozoicomonadaceae shows by far the strongest signal of cophylogeny with coral hosts among tested 
bacterial families in coral tissue (16). In the present dataset, Endozoicomonas was also the single genus 
that most typically dominated coral tissue microbiomes (18% of coral genera; Figure 2A). We therefore 
tested whether the signal of microbiome dominance on disease susceptibility could be explained by the 
abundances of dominant taxa, and found that across all corals in our dataset, Endozoicomonas abundance 
explained the overwhelming majority of variation in ecological dominance among coral tissue 
microbiomes (PGLS: R2: 0.60, p = 6.2 x10-10, FDR q = 2.5x10-9; Figures 2C & 3A; Supplementary Data 
Table 5a). Further, the relative abundance of Endozoicomonas in coral tissue alone explained 30% of 
variance in overall disease susceptibility (PGLS: R2 = 0.30, p = 0.0002, FDR q = 0.0004; Figure 3B; 
Supplementary Data Table 5a), exceeding the signal from ecological dominance.  
 
After testing Endozoicomonas - disease associations as a prior hypothesis, we also sought to put these 
associations in context by testing for correlations with disease in all other dominant microbial genera 
found in the study (Figure 2C; Supplementary Data Table 6a). This scan confirmed that Endozoicomonas 
showed far stronger correlations with disease than other microbes. It also found two dominant genera 
found in coral skeleton that also significantly correlated with disease susceptibility: Cellulosimicrobium 
(Phylum: Actinobacteria/Actinomycetota) and Paramaledivibacter (Phylum: Firmicutes/Bacillota), but to 
a much lesser extent than Endozoicomonas in tissue and mucus compartments. Thus, prior results linking 
ecological dominance and overall disease susceptibility appear to be largely explained by changes in 
Endozoicomonas relative abundance over coral evolution.  
 
Coral opportunist abundance in healthy corals does not predict genus-wide disease susceptibility. 
Correlations between Endozoicomonas and disease across the coral tree were initially surprising, as 
Endozoicomonas is not thought to be associated with coral pathogenesis. This raised the question of 
whether the abundance of known or suspected coral pathogens in apparently healthy corals correlates with 
cross-genus differences in disease susceptibility.  
 
The abundance of bacterial groups containing prominent putative bacterial pathogens (such as 
Vibrionales, Nostocales or Rickettsiales, see (38)) in healthy corals did not show any correlation with 
disease susceptibility among coral species when tested (Supplementary Data Table 7). Thus, having high 
abundances of coral opportunists when healthy does not seem to be a hallmark of disease-susceptible 
corals. This is mostly expected since the abundance of pathogens typically only increases during stress.     
These observations in healthy corals leave open the question of what about Endozoicomonas causes it to 
be so strongly correlated with coral disease susceptibility. 
 
Endozoicomonas is linked to metabolic benefits to the coral host (39, 40) and experimental studies have 
shown that decreases in its abundance is typical with disease (41, 42) or other health stressors such as 
bleaching (37). This suggests that the striking correlation between Endozoicomonas and disease is not due 
to pathogenesis by Endozoicomonas, but instead might arise due to opportunity costs (e.g., in innate 
immunity, permissiveness to CAMA formation, or symbiosis with defensive microbes within coral 
tissue). If maintenance of high abundances of Endozoicomonas has fitness costs, they may be balanced by 
metabolic benefits, and we should expect that Endozoicomonas would be more abundant in corals with 
life-history strategies that favor traits such as rapid growth.  
 
Endozoicomonas is associated with high growth rates. If symbiosis with Endozoicomonas did play a 
causal role in coral life-history tradeoffs, we hypothesized that we would see a positive correlation 
between a beneficial coral trait and Endozoicomonas that counterbalances the correlation between 
Endozoicomonas and disease. Given that Endozoicomonas is thought to be a metabolic mutualist of 
corals, and it has recently been suggested to facilitate faster coral growth (43), growth rate seemed like a 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.26.538152doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538152
http://creativecommons.org/licenses/by-nc/4.0/


 

likely candidate for a potential benefit explaining the persistence of coral-Endozoicomonas associations. 
Depending on the mechanism of action, any such Endozoicomonas - growth correlations might depend 
merely on the presence of Endozoicomonas, or alternatively on its relative abundance. Using data from 
the Coral Trait Database (CTDB; (28)) we tested whether Endozoicomonas relative abundance was 
correlated with growth rate in corals where we detected Endozoicomonas (i.e., the effect of relative 
abundance alone) and in all corals (i.e., the combined effect of presence and abundance). In both cases, 
we limited this analysis to only corals with replicated growth rate data (>= 5 replicates in the CTDB).   
 
While the abundance of Endozoicomonas was not correlated with growth rate across all coral genera 
(tissue PGLS: R2 = 0.11, p = 0.17, FDR q = 0.17; Supplementary Data Table 8a), across coral genera 
where Endozoicomonas was detected (n = 17 genera), its relative abundance was strongly correlated with 
growth rate (tissue PGLS: R2 = 0.31, p = 0.024, FDR q = 0.024; Supplementary Data Table 8b). These 
results are consistent with a pattern in which lineage-specific expansions of Endozoicomonas within coral 
microbiomes correlate with or potentially contribute to growth rate. Thus, Endozoicomonas may in part 
explain, or at least correlate with, about a third of known growth rate differences between coral genera. 
 
Thus, across the coral genera surveyed in our dataset, initial, low-level symbiosis with Endozoicomonas 
does not correlate with growth rate, but subsequent expansions of the abundance of Endozoicomonas 
within coral microbiomes co-occur with both higher average growth rates and greater disease 
susceptibility. 
 
Endozoicomonas may mediate growth-defense tradeoffs during coral evolution. Having seen that 
Endozoicomonas is correlated with both disease susceptibility and growth-rate in corals, we investigated 
if these correlations were stronger or weaker than the direct correlation between disease and growth rate 
in our dataset. Across genera with both growth rate and disease prevalence data, growth and disease 
susceptibility were positively correlated. However, this correlation had only a modest effect size and was 
not statistically significant. Thus, in this dataset Endozoicomonas showed stronger associations with both 
growth and disease than these factors showed with one another, regardless of whether the analysis was 
conducted across all coral genera (tissue PGLS: R2 = 0.12, p = 0.17, FDR q = 0.17; Supplementary Data 
Table 9a) or just those where Endozoicomonas was present (tissue PGLS: R2 = 0.06, p = 0.37, FDR q = 
0.37; Supplementary Data Table 9b). This suggested that Endozoicomonas relative abundance might not 
merely mark tradeoffs between growth and disease, but may play some causal role in one or both 
processes. 
 
Phylogenetic path analysis of growth, disease, and Endozoicomonas abundance. The univariate 
correlations between Endozoicomonas, host disease susceptibility and growth rate raise the question of 
the direction of causality by which these factors have become non-randomly associated during coral 
evolution. Using phylogenetic path analysis (Methods), we compared 14 models of the relationship 
between Endozoicomonas relative abundance, disease susceptibility, and growth rate (Supplementary 
Data Table 10a, Supplementary Figure 3).  
 
As is common in this type of analysis, more than one model was consistent with the data. However, none 
of the top models using either BM (Supplementary Table 10b) or Pagel’s lambda (Supplementary Data 
Table 10c) suggested that disease influenced growth rate or vice versa without the influence of 
Endozoicomonas (Figure 3D), and all significant models include Endozoicomonas. Thus, while the 
precise feedback remains to be determined, causality analysis suggests that, in some capacity, 
Endozoicomonas likely mediates growth rate and disease. 
 
Potential mechanisms of action. The findings of positive correlations between Endozoicomonas, host 
growth rate, and host disease susceptibility documented in this study complement and contextualize much 
of the ongoing work on the mechanisms underlying proposed coral-Endozoicomonas metabolic 
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mutualism (39, 43) and suggest that the interaction of Endozoicomonas with coral disease susceptibility 
deserves greater scrutiny. They also echo findings of correlations between life-history strategy and 
microbiome structure in other important marine invertebrates, such as that between predator defense and 
microbial abundance in marine sponges (44). 
 
The mechanism by which corals with high proportions of Endozoicomonas become more vulnerable to 
disease are not yet known, but potential explanations fall into three main categories: ecological, structural, 
or immunological. 
 
Many coral microbes (but not Endozoicomonas) are thought to protect against pathogenic disease by 
mechanisms such as antibiotic secretion (24), direct predation (25), jamming of quorum signaling (26), 
and through physically occupying space close to host tissues that may restrict binding sites for 
opportunists and pathogens. In theory, it is possible that Endozoicomonas abundance may interact with 
other aspects of coral microbial ecology, thereby reducing microbially-derived host defenses. However, 
that Endozoicomonas are frequently observed in discrete CAMAs complicates this possibility, as any 
effects on microbes outside the local area of these CAMAs would have to rely on indirect consequences 
of Endozoicomonas-coral interactions or secreted factors. Nevertheless, if this hypothesis were correct, 
the reductions in the abundance of Endozoicomonas that are often reported in diseased coral phenotypes 
(e.g., (37)) would then be adaptive on the part of the host, by allowing proportionally greater growth of 
other, more protective microbes. This hypothesis could be tested by microbial inoculation experiments 
that increase Endozoicomonas abundances prior to or concurrent with disease exposure, with the 
prediction that this would increase disease severity (although care must be taken to exclude nutritional 
benefits from corals directly eating the Endozoicomonas confounding the results). More systematic 
studies of whether high abundances of Endozoicomonas are exclusively found in visible CAMAs could 
also speak to the plausibility of this ecological hypothesis, by clarifying the likely routes for interaction 
between Endozoicomonas and other coral-associated microbes.   
 
In addition to ecological interactions, the Endozoicomonas - disease susceptibility correlation may also 
arise as a result of host traits that are permissive for the formation of microbial aggregates. As the cellular 
processes involved in establishing mutualism, commensalism and pathogenesis often overlap, the same 
host-microbe interactions that allow Endozoicomonas and some other microbes like Simkania (43) to 
aggregate within coral tissues may also be more permissive towards invasion by pathogens. So far known 
coral pathogens have not been reported to be present within CAMAs. However, other structural 
mechanisms are possible.  For example, the density, morphology, or diversity of septate junctions — 
which form epithelial barriers similar to tight junctions in chordates (45) — might, in theory, influence 
the ability of both Endozoicomonas and pathogenic microbes to enter coral tissues. This idea could be 
tested by examining cellular morphology, sequence similarity, and/or gene expression of septate junctions 
and their constituent components in coral species in which CAMAs did or did not form.  
 
Finally, it is possible that coral immunological strategies that permit symbiosis with high abundances of 
Endozoicomonas also tend to make corals more vulnerable to pathogens. Coral species vary in immune 
investment (as measured by immune parameters like melanin abundance, phenoloxidase activity, etc), and 
low immune investment has been observed to correlate with disease susceptibility (46). Some theory 
predicts that the evolution of more permissive immunological strategies is favored by symbionts that 
provide metabolic benefits to the host (47). In corals specifically, immune repertoires in key gene families 
such as TIR-domain containing genes vary greatly between species, which has been hypothesized to 
influence microbiome structure (48). Thus, symbiosis with Endozoicomonas may promote lower immune 
investment in corals, which in turn increases disease susceptibility. This hypothesis could be tested by 
comparing the length of coral-Endozoicomonas associations, to see whether longer histories of 
association lead to low immune investment, or by examining selection on innate immune genes in low vs. 
high Endozoicomonas coral lineages (e.g., by dN/dS ratios). 
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A related immunological explanation would occur if Endozoicomonas itself achieves high abundances by 
suppressing aspects of host immunity. Genomic studies of host-associated Endozoicomonas identified 
variation in the proportion of eukaryote-derived genes and domains as a key feature of strain variation, 
including some domains thought to suppress immunity-induced apoptosis (49). If representatives of those 
different strains could be cultured, experiments adding exogenous Endozoicomonas might clarify whether 
Endozoicomonas strains have any direct effects on coral immunity, and if so whether they differ from 
strain to strain. 
 
Conclusions. Animals evolved in a microbial world resulting in interactions between animal hosts and 
their associated microbes that influence organismal fitness. These interactions can occur across 
generations and may elucidate many of the eco-evolutionary patterns that we see among organisms, 
including mediation of important life history tradeoffs. Using evolutionary analyses of coral microbiomes, 
we provide evidence that symbiosis with Endozoicomonas may mediate growth vs. disease resistance 
(defensive) tradeoffs. While further manipulative studies are necessary to confirm this finding and 
determine the directionality of the relationship, evidence for this trend across the coral tree of life is 
compelling.  
 
Our comparative approach suggests that Endozoicomonas-dominated lineages of corals may grow more 
quickly under ideal conditions but are more likely to succumb to coral disease. Because much other work 
has shown that coral disease is exacerbated by global and local stressors such as climate-change driven 
heat waves or local pollution events (33, 38), this may make Endozoicomonas- dominated coral especially 
vulnerable to environmental change (Figure 4).  
 
If microbial symbiosis does play a causal role in coral life history tradeoffs in the present day, then 
identifying microbes underlying those tradeoffs may benefit microbiome manipulation for targeted coral 
conservation and restoration strategies. While the correlation between Endozoicomonas and disease in 
this work was observed at the genus level (primarily because this is the level of taxonomic specificity for 
most available disease surveys), future work could examine whether similar trends appear between coral 
sister species or within coral populations. For example, microbial screening (e.g., (50)) could help 
identify Endozoicomonas-dominated coral species or populations that may be more susceptible to disease 
and drive the conservation and protection of these individuals or their habitats. Identifying these target 
corals is perhaps most relevant for coral restoration initiatives that include breeding, nursery propagation 
and outplanting, where coral health is monitored closely and predicting disease susceptibility can inform 
decision-making. Depending on the mechanism underlying the Endozoicomonas-disease susceptibility 
correlations reported here, Endozoicomonas-dominated corals may further represent strong candidates for 
microbiome engineering (e.g., human-assisted manipulation of host-associated microbes (51) or the 
application of probiotics (14, 52)) to enhance host resilience in anticipation of stress events by decreasing 
microbiome dominance. That said, we emphasize that microbiome manipulation and other restoration 
initiatives are not replacements for efforts to decarbonize global economies to limit greenhouse gas 
emissions. 
 
The results presented here provide the first evidence of a likely microbe-mediated life-history tradeoff in 
scleractinian corals. Further exploration of this and other such potential tradeoffs may shed light on the 
evolutionary interplay between microbes and the physiology and ecology of their animal hosts. 
 
Methods  
 
Coral sample collection and 16S rRNA pre-processing. 16S rRNA sequence data was obtained from 
visibly healthy coral DNA extractions collected and processed for the Global Coral Microbiome Project 
(GCMP). This included coral samples taken from eastern and western Australia that were used in a 
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previous study by Pollock and co-authors (16) in addition to coral samples taken from the Red Sea, Indian 
Ocean, Coral Triangle, Caribbean, and Eastern Pacific. All samples compared in this study were 
collected, processed, and sequenced using consistent protocols as outlined below. In total, 1,440 coral, 
outgroup, and environmental samples were collected. Of these GCMP samples, the 1,283 scleractinian 
coral and outgroup samples were used in the present study (Supplementary Data Table 1a). These 
comprise 132 species and 64 genera of corals originating from 42 reefs spanning the Pacific, Indian, and 
Atlantic oceans.  
 
The collection and processing of these coral samples followed the methods outlined in Pollock et al (16) 
and are compatible with samples processed for the Earth Microbiome Project (53). Briefly, three coral 
compartments were targeted for each sample: tissue, mucus, and skeleton. Mucus was released through 
agitation of coral surface using a blunt 10mL syringe for approximately 30 seconds and collected via 
suction into a cryogenic vial. Small coral fragments were collected by hammer and chisel or bone shears 
for both tissue and skeleton samples into sterile WhirlPaks (Nasco Sampling, Madison, WI). All samples 
were frozen in liquid nitrogen on immediate return to the surface prior to processing. In the laboratory, 
snap frozen coral fragments were washed with sterile seawater and the tissue was separated from skeleton 
using sterilized pressurized air at between 800-2000 PSI. Tissue and skeleton samples were then 
preserved in PowerSoil DNA Isolation kit (MoBio Laboratories, Carlsbad, CA; now Qiagen, Venlo, 
Netherlands) bead tubes, which contain a guanidinium preservative, and stored at -80℃ to await further 
processing. Outgroup non-scleractinian Anthozoans were also opportunistically collected and stored 
similarly, including healthy samples of the genera Millepora (hydrozoan fire coral), Palythoa (zoanthid), 
Heliopora (blue coral), Tubipora (organ pipe coral), and Xenia and Lobophytum (soft corals).  
 
Bacterial and archaeal DNA were extracted using the PowerSoil DNA Isolation Kit (MoBio Laboratories, 
Carlsbad, CA; now Qiagen, Venlo, Netherlands). To select for the 16S rRNA V4 gene region, polymerase 
chain reaction (PCR) was performed using the following primers with illumina adapter sequences 
(underlined) at the 5’ ends: 515F (54) 5′− TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG 
GTG YCA GCM GCC GCG GTA A −3′ and 806R (55) 5’− GTC TCG TGG GCT CGG AGA TGT GTA 
TAA GAG ACA GGG ACT ACN VGG GTW TCT AAT −3′). PCR, library preparation, and sequencing 
on an Illumina HiSeq (2x125bp) was performed by the EMP (53). All raw sequencing data and associated 
metadata for the samples used in this study are available on Qiita (qiita.ucsd.edu) under project ID 10895, 
prep ID 3439. 
 
Sequence assembly, quality control and taxonomic assignment. 16S rRNA sequencing data were 
processed in Qiita (56) using the standard EMP workflow. Briefly, sequences were demultiplexed based 
on 12bp Golay barcodes using “split_libraries” with default parameters in QIIME1.9.1 (57) and trimmed 
to 100bp to remove low quality base pairs. Quality control (e.g., denoising, de-replication and chimera 
filtering) and identification of amplicon sequence variants (ASVs) were performed on forward reads 
using deblur 1.1.0 (58) with default parameters. The resulting biom and taxonomy tables were obtained 
from Qiita (CRC32 id: 8817b8b8 and CRC32 id: ac925c85) and processed using a customized QIIME2 v. 
2020.8.0 (59) pipeline in python (github.com/zaneveld/GCMP_global_disease). Taxonomic assignment 
of ASVs was performed using vsearch (60) with SILVA v. 138 (61).  
 
Removal of cryptic mitochondrial reads. Coral mitochondrial reads obtained from metaxa2 (62) were 
added to the SILVA repository to better identify host mitochondrial reads that may be present in the 
sequencing data (63). We refer to this expanded taxonomy as “silva_metaxa2” in code. After taxonomic 
assignment, all mitochondrial and chloroplast reads were removed. The bacterial phylogenetic tree was 
built using the SATé-enabled phylogenetic placement (SEPP) insertion technique with the q2-fragment-
insertion plugin (64) to account for the short-read sequencing data, again using the SILVA v. 138 (61) 
database as reference taxonomy. The final output from this pipeline consisted of a taxonomy table, ASV 
feature table and phylogenetic tree that were used for downstream analyses. 
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Identification of potential contaminants. Potential contaminants from extraction and sequence blanks 
(n = 103 negative controls) were identified and removed using the decontam package (65) in R v. 4.0.2 
(66) with a conservative threshold value of 0.5 to ensure all ASVs that were more prevalent in negative 
controls than samples were removed (n = 662 potential contaminants). The final feature table consisted of 
a total of 1,383 samples, 195,684 ASVs, and 37,469,008 reads. 
 
Summary of disease data by coral genus. Disease data were gathered from long-term multi-species 
surveys in the Florida Keys (the Florida Reef Resilience Program (FRRP), https://frrp.org/), Hawai՛i 
(HICORDIS (29)), and Australia (this study). Disease counts for Australian corals were collected over a 
period of 5 years (2009-2013) across 109 reef sites and 65 coral genera (Supplementary Data Table 1b). 
At each of the 109 reefs, we surveyed coral health using 3 replicate belt transects laid along reef contours 
at 3-4m depth and approximately 20m apart using globally standardized protocols (67). Depending on the 
reef location, belt transects were either 10, 15, or 20m in length by 2m width making the area surveyed at 
each reef between 60 and 120m2. Within each belt transect, we identified each coral colony over 5 cm in 
diameter to genus and classified it as either healthy (no observable disease lesions) or affected by one or 
more of six common Indo-Pacific coral diseases (according to (68)). Together with the FRRP and 
HICORDIS data, the combined disease dataset contained 582,342 coral observations across 99 coral 
genera (Supplementary Data Table 1c).  
 
Because many of these disease observations identified corals only to genus, disease prevalence data were 
summarized at the genus level. All three resources represent coral surveys over time, ranging from 5 to 16 
years. We chose such long-term datasets in an attempt to minimize the potential effects of specific events 
(e.g., bleaching in a single summer) and instead to capture more general trends in disease susceptibility 
across species, if such trends were present. Summarizing these data at the genus level was thus part of a 
comparative strategy, enabling us to extract overall trends and average out local circumstances, so that we 
could find holobiont features that control disease resistance that may protect some corals but not others. 
When summarizing at the genus level, individual counts of healthy corals or corals with specific diseases 
were summed within coral genera across these datasets.  
 
To ensure sufficient replication, we excluded coral genera with fewer than 100 observed individuals. This 
minimal count was selected because it is the lowest frequency at which diseases with a reasonably high 
frequency (e.g., 5%) can be reliably detected. (With 100 counts, there is a >95% chance of detecting at 
least one count of any disease present with >= 5% prevalence; cumulative binomial, 100 trials, success 
chance = 0.05). Because only very rarely observed taxa were removed, this filtering preserved 99.8% of 
total observations. Ultimately, our genus-level summary produced a table with 581,311 observations 
across 60 coral genera (Supplementary Data Table 1d).  
 
Summary of the microbiome data by coral host genus. Statistical summaries of microbiome 
community composition were calculated for each sample in QIIME2 (59), and then summarized within 
anatomical compartments and coral genera. These summaries of coral microbiome alpha diversity were 
richness (observed features per 1000 reads), evenness (the Gini Index), and Simpson’s Index, which 
combines both richness and evenness. Thus, each combination of coral genus and anatomical 
compartment — such as Acropora mucus  — was assigned an average α-diversity value.  
 
Simpson’s Index, which is of particular importance in these results, is at its highest when a single taxon is 
the only one present in microbiome, and at its lowest when there are both a large number of taxa, and all 
taxa have equal abundance. Thus, this measure is reduced both by community richness and community 
evenness (Simpson’s Index is closely related to Simpson’s Diversity, which is calculated as 1 - Simpson’s 
Index, such that more rich or even communities produce higher values).  
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Construction of a genus level trait table. The summarized, genus-level disease susceptibility data 
compiled from all disease projects, and the summarized genus-level microbiome diversity data (see 
above) were combined to form a trait table that was used in subsequent evolutionary modeling. 
Additionally, the relative abundance of ‘dominant’ microbes analyzed in this study was averaged within 
genera and added to this genus-level trait table. 
 
Genus-level summary of a reference coral phylogeny. Starting with a previously published multigene 
time-calibrated phylogeny of corals (30) that we had previously used to demonstrate phylosymbiosis in 
corals (16), we randomly selected one representative species per genus to produce a genus level tree. This 
approach was preferred over several alternatives — such as trimming the tree back to the last common 
ancestor of each genus and reconstructing trait values — because it required fewer assumptions about the 
process of trait evolution. As microbiome data were not available for all genera on the coral tree (e.g., 
temperate deep sea corals), the tree was further pruned to include only the subset of branches that 
matched those with microbiome data. 
 
Addition of genus-level coral growth data. To examine the influence of microbiome structure on coral 
traits, we pulled growth data from the Coral Trait Database (28) from all coral genera that matched those 
with both microbiome and disease data, and were collected using consistent metrics (mm/yr). This 
resulted in growth rate data from 18 coral genera that were subsequently combined with our genus-level 
trait table (Supplementary Data Table 1d).  
 
Phylogenetic Correlative Analysis. Shared evolutionary history induces correlations in traits between 
species that violate the requirement of standard statistical tests that observations must be independent and 
uncorrelated. Thus, special care must be taken to account for phylogeny in comparative analysis. We first 
applied Felsenstein’s phylogenetic independent contrasts (PIC) to visualize our cross-genus trait 
correlations using the phytools R package (69). This method removes the effect of any shared 
evolutionary histories by calculating differences in trait values (contrasts) between sister taxa. We next 
examined the relationships between traits using information-theoretic model selection (that is, comparison 
of AICc scores) to identify phylogenetic generalized least squares (PGLS) models of evolution that best 
explained the observed distribution of microbiome α- or β-diversity and disease susceptibility (as 
continuous evolutionary characters) in extant species. We tested 4 evolutionary models in the caper R 
package (70). In the first model, we used PGLS with no branch length transformation (i.e. holding λ,𝜹, κ 
= 1). Thus, this first model is equivalent to PIC. In the next 3 models, we transformed branch lengths on 
the tree by allowing the model to fit either λ, 𝜹, or κ (see below) using maximum likelihood estimation, 
while fixing the other 2 parameters at 1. We refer to these 4 models as PGLS, PGLS + λ, PGLS + 𝜹, and 
PGLS + κ. For detailed explanations of each parameter, please refer to Supplementary Data Table 11. 
Typically, these models estimated very low λ (~0), indicating little or low phylogenetic inertia. R2 and p-
values were adjusted for multiple comparisons using a false discovery rate (FDR) correction. Significant 
relationships between the two traits suggests that they are evolutionarily correlated. Data were visualized 
by plotting phylogenetic contrasts and all statistics reported represent the best PGLS model results.  
 
Additionally, ancestral state reconstructions of key traits were visualized using the contmap function in 
the phytools R package (69), which in turn estimates internal states using fast maximum-likelihood (ML) 
ancestral state reconstruct as implemented in the fastAnc phytools function. 
 
Phylogenetic causality analysis. Observing that A and B are correlated famously does not guarantee that 
A causes B. However, non-random correlation between A and B does imply some causal association - 
though there are many possibilities (A causes B, B causes A, a positive feedback loop exists between A & 
B, some external factor C causes both A and B, etc.). Path analysis represents hypotheses of causality 
using directed acyclic graphs, then tests the different strengths of association predicted under different 
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hypotheses of causation to test which are consistent with data.  The cross-species nature of these data 
further necessitated use of phylogenetic path analysis, which also accounts for expected trait correlations 
among related genera.  Hypotheses of the direction of causality between microbiome (specifically 
Endozoicomonas), disease, and growth rate were tested using a phylogenetic causality analysis performed 
in the R package phylopath (71). This analysis tests the ability of different models to explain correlations 
in trait data. For example, does selection for a high growth rate in turn drive selection for increased 
Endozoicomonas abundance, which then increases disease susceptibility, or does symbiosis with 
Endozoicomonas itself separately increase disease and growth? Fourteen potential causality models were 
tested to incorporate all biologically plausible pathways between Endozoicomonas abundance, disease 
susceptibility, and growth rate (Supplementary Data Table 11a; Supplementary Figure 3). The top 
performing causality models according to CICc values (using both Pagel’s λ and Brownian Motion 
models of evolution) were averaged for interpretation and visualization.  
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Supplementary Data Tables 
 
Supplementary Data Table 1. Microbiome and disease data.  a. Global Coral Microbiome Project 
metadata b. Disease data for Eastern Australia. c. Combined genus-level trait table      
Supplementary Data Table 2.  Dominant microbial taxa by coral genus. a. mucus b. tissue c. skeleton 
Supplementary Data Table 3.  PGLS correlations between microbiome alpha diversity and disease. 
a. Alpha diversity vs. host disease for all data b. Alpha diversity vs. disease for Australia data only c. 
Alpha diversity vs. host disease in gamma- proteobacteria dominated microbiomes 
Supplementary Data Table 4.  PGLS correlations between microbiome beta diversity and disease.  
Supplementary Data Table 5.  PGLS correlations between Endozoicomonas relative abundance and 
host disease prevalence. 
Supplementary Data Table 6. PGLS correlations between all dominant microbes and a. host disease 
prevalence b. host growth rate. 
Supplementary Data Table 7. PGLS correlations between known opportunists/pathogens and 
disease. 
Supplementary Data Table 8. PGLS correlations between Endozoicomonas and host growth rate. a. 
Correlation of Endozoicomonas relative abundance against host growth rate across all coral genera b. 
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Correlation of Endozoicomonas relative abundance against host growth rate across all coral genera where 
Endozoicomonas is present. 
Supplementary Data Table 9. PGLS correlations between disease susceptibility and host growth 
rate.  a. Direct correlation of disease susceptibility and growth rate in all coral genera. b. Direct 
correlation of disease prevalence and growth rate in coral genera where Endozoicomonas is present. 
Supplementary Data Table 10. Phylogenetic path analysis. a. Models tested b. Relative weight of each 
model under Brownian Motion. c. Relative weight of each model using Pagel’s Lambda. 
Supplementary Data Table 11. PGLS model explanations.  
 
Supplementary Figures 
Supplementary Figure 1. Ancestral state reconstruction of disease susceptibility and alpha diversity 
metrics. a. richness, b. evenness (Gini index) and c. dominance. 
Supplementary Figure 2. Ancestral state reconstruction of disease susceptibility and microbiome 
dominance.  Filtered to coral hosts dominated by a. α-proteobacteria or b. λ-proteobacteria. 
Supplementary Figure 3. Causality models tested between Endozoicomonas abundance, disease 
susceptibility and growth rate. 
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Figures 

 
Figure 1. Conceptual overview of data sources integrated for the project. A. Map of sampling 
locations for coral microbiomes analyzed in the manuscript. Pie charts show the proportion of coral 
samples from families in the Complex clade (cool colors) and Robust clade (warm colors). Samples were 
collected from coral mucus, tissue, and endolithic skeleton (see Methods). B. Schematic representation of 
data integration for the project. Coral microbiome data (as shown in A) were combined with long-term 
disease prevalence data from 3 projects (the Florida Reef Resilience Program (FFRP), the Hawai՛i Coral 
Disease Database (HICORDIS), and data from Australia (this study)), as well as coral trait data from the 
Coral Trait Database, and a molecular phylogeny of corals (see Methods). In order to integrate data from 
these disparate sources, all annotations were pooled at the genus level. The end product is a trait table of 
microbiome, taxonomic, physiological, and disease data across diverse coral genera. 
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Figure 2. Dominant microbes in the coral microbiome. A) Dominant bacterial or archaeal genera in 
coral mucus (cyan), tissue (orange), or skeleton (purple) microbiomes. Pie wedges represent the fraction 
of coral host genera in which the labeled bacterium is more abundant than all other bacterial or archaeal 
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taxa. Cyan shades represent microbes dominant in mucus, oranges represent microbes dominant in tissue 
(but not mucus), purple shades represent microbes dominant in skeleton (but not mucus or tissue). 
Endozoicomonas, which is of special significance later in the paper, is highlighted in aqua. B) Bar charts 
showing correlations between microbiome alpha and beta diversity metrics and disease, represented by 
the R2 for PGLS correlations. Alpha diversity metrics include richness, evenness (Gini index), and 
dominance (Simpson’s index), and weighted UniFrac beta diversity metrics including the three principal 
component axes (PC1, PC2, PC3) that represent measures of community structure. Significant 
relationships (p < 0.05, Supplementary Data Table 4) are marked by an asterisk (*). C) Bubble plot 
showing correlations between dominant microbial taxa and coral disease prevalence. The size of each 
bubble represents the R2 for PGLS correlations between disease susceptibility and microbial relative 
abundance for each listed taxon in either all samples (top row), mucus samples (cyan row), tissue samples 
(orange row), or skeleton samples (purple row). Colored points were significant (p < 0.05; Supplementary 
Data Table 6a). Points that were not significant or had too little data (n < 10) for reliable testing are 
marked in white. Taxa whose abundance is significantly correlated with disease are marked in bold on the 
x-axis. 
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Figure 3. Endozoicomonas correlates with growth and disease. Phylogenetic independent contrasts in 
Endozoicomonas relative abundance in coral tissue (per 1000 reads) against A) microbial dominance, B) 
integrated estimate of coral disease prevalence and C) coral growth rate (mm per year) from the coral 
traits database. Dotted red lines in panels B and C indicate the null expectation that if traits are 
uncorrelated, change in the x-axis trait will not correlate with changes in the y-axis trait, with contrasts 
distributed equally above or below the dotted line. Statistics reflect phylogenetic generalized least squares 
(PGLS) regression (Supplemental Data Tables 5 and 9). D) Modeled direction of causality between 
Endozoicomonas abundance, disease susceptibility and growth rate using both Brownian Motion (blue) 
and Pagel’s Lambda (green, dotted) evolutionary models. The thickness of the lines represents the 
averaged standardized path coefficients of the top competing models based on CICc values 
(Supplementary Data Table 11). 
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Figure 4. Endozoicomonas dominance facilitates life history tradeoffs.  Conceptual hypothesis on the 
role Endozoicomonas (in teal) plays in the tradeoff between growth and defense (disease susceptibility).  
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