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A B S T R A C T   

Stony corals play a key role in the marine biodiversity of many tropical coastal areas as suppliers of substrate, 
food and shelter for other reef organisms. Therefore, it is remarkable that coral diversity usually does not play a 
role in the planning of protected areas in coral reef areas. In the present study we examine how stony coral 
diversity patterns relate to marine park zonation and the economic value of reefs around St. Eustatius, a small 
island in the eastern Caribbean, with fisheries and tourism as important sources of income. The marine park 
contains two no-take reserves. A biodiversity survey was performed at 39 sites, 24 inside the reserves and 15 
outside; 22 had a maximum depth >18 m and 17 were shallower. Data on economic value per site were obtained 
from the literature. Corals were photographed for the verification of identifications made in the field. Coral 
species richness (n = 49) was highest in the no-take reserves and species composition was mainly affected by 
maximum depth. No distinct relation is observed between coral diversity and fishery value or total economic 
value. Based on the outcome of this study we suggest that in future designs of marine park zonation in reef areas, 
coral diversity should be taken into consideration. This is best served by including reef areas with a continuous 
depth gradient from shallow flats to deep slopes.   

1. Introduction 

Coral reefs and their biota are threatened by global climate change 
and local human activities (Hughes et al., 2017, 2018; Heery et al., 
2018). Coral bleaching as a result of rising sea water temperatures is 
considered to increase the worldwide extinction risk of coral species 
(Carpenter et al., 2008), whereas local loss of coral species is linked to 
immediate anthropogenic factors (Hoeksema and Koh, 2009; van der 
Meij et al., 2010). A common countermeasure against such 
human-induced threats is the establishment of Marine Protected Areas, 
MPAs (Bellwood et al., 2004). Although it is obvious that MPAs are 
designed to conserve or restore biodiversity (Zhao et al., 2020), it is 
usually not clear how species composition and species richness are used 
to define boundaries and zonation (Agardy et al., 2011; Pressey et al., 
2015; Morzaria-Luna et al., 2018), including those in coral reef areas 
(Mellin et al., 2016). Possibly, the role of biodiversity in coral reef 

ecosystem functioning is not always well understood or appreciated 
(Brandl et al., 2019). 

Although in some studies, coral species composition plays a role in 
MPA planning (Beger et al., 2003; Guzman et al., 2004; Cortés-Useche 
et al., 2019), this is usually not the case, despite corals being the main 
constructors of reefs and many other species depending on them for 
food, shelter, or substrate (Patton, 1976; Scott, 1987; Howell et al., 
2011; Stella et al., 2011; Hoeksema et al., 2012, 2022a, 2022c; Montano, 
2020; Lymperaki et al., 2022; Maggioni et al., 2022). Typically, more 
emphasis is put on fish diversity in the design and management of MPAs 
in coral reef areas, predominantly because of its economic relevance in 
fisheries (Cinner et al., 2012; Edgar et al., 2014; Bayley et al., 2020; 
Weible et al., 2021) and its ecological role in relation to resilience 
(Bellwood et al., 2004; Mora et al., 2006; Emslie et al., 2015). The 
importance of fish diversity as a diving attraction may not always be 
taken into consideration here (Fabinyi, 2008), with the possible 
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exception of large pelagic fishes and rare, cryptic fish species that live in 
sediment-rich environments close to coral reefs (Rudd and Tupper, 
2002; Vianna et al., 2018; De Brauwer et al., 2019). 

If no-take zones are designed to exclude fisheries, one would expect 
that the commercial harvesting or collecting of corals and other reef 
organisms would also be prohibited, even though this is usually not 
specifically mentioned (Miller et al., 2012; Roberts, 2012). This may 
explain why attention to corals in reef surveys is usually restricted in 
terms of cover and less of species diversity (e.g., Mumby and Harborne, 
2010; Selig and Bruno, 2010; Brodie and Waterhouse, 2012; Ortiz Cajica 
et al., 2020; Wright, 2022). A problem in reef coral diversity data is that 
they can be biased towards well known species in the shallowest reef 
zones, while their taxonomy is not always consistent and up-to-date 
(Muir et al., 2022). Many coral diversity surveys are performed at 
depths down to 15 m (Aronson et al., 1994; Edinger et al., 1998; Yusuf 
et al., 2021) because these can be accessed more easily during SCUBA 
diving than deeper ones, due to air or nitrox supply and dive safety, 
although these reasons are usually not explained, or because the sur-
veyed reefs simply lack deeper zones (Arulananthan et al., 2021; Ditzel 
et al., 2022). 

If the protection of coral species is considered crucial in the man-
agement of reef biota, because corals are the foundation species of coral 
reef communities with other species depending on them (Stella et al., 
2011; Tornabene et al., 2013; Ainsworth et al., 2020), it would be 
relevant to know whether coral diversity can indeed be linked to park 
zonation and no-take reserves make a difference herein. This informa-
tion is not always utilized. For example, the Great Barrier Reef Marine 
Park (GBRMP) has a clear zonation plan, but it does not include the 
northernmost GBR reefs, which have the highest coral species richness 
(Fabricius and De’ath, 2008; Hoeksema, 2015). Such reefs are remote 
from human populations and experience less pressure than urban reefs 
(Heery et al., 2018). Owing to its huge size, the GBRMP requires a 
large-scale management that is incomparable with the running of small 
marine parks. Logistically, small parks may be easier to investigate as 
models regarding the conservation of biodiversity. A well-known 
example of a relatively small marine park is the Bonaire National Ma-
rine Park in the southern Caribbean, which was established in 1979 and 
includes two reserves where human entrance is prohibited (Thur, 2010; 
de Bakker et al., 2019). 

An example of an even smaller and less-known marine park sur-
rounds the volcanic island of St. Eustatius, in the eastern Caribbean 
(White et al., 2006). This park, the St. Eustatius National Marine Park 
(SNMP), includes two no-take reserves. In support of park management, 
the Dutch government supported recent surveys on marine habitats 
(Debrot et al., 2014), reef-fish assemblages (van Kuijk et al., 2015), fish 
biomass, reef health with coral cover, the abundance of key 
macro-invertebrates (de Graaf et al., 2015; Kitson-Walters, 2017), and 
the construction of artificial reefs (Hylkema et al., 2020). Coral-species 
occurrence around the island in previous studies was only included as a 
component of coral cover, which resulted in counts of 25 taxa in 
2012–2013 (Debrot et al., 2014) and 30 taxa in 2017 (Kitson-Walters, 
2017). The original management plan was proposed in a report that 
provided information on the marine resources of St. Eustatius, which 
was aimed at their sustainable use for tourism (Sybesma et al., 1993). 

No survey has ever been undertaken on the number of coral species 
around St. Eustatius and how this species diversity is distributed. 
Consequently, it is unclear whether the park zonation is beneficial for 
the protection of benthic species diversity and threatened coral species. 
Therefore, we performed a survey to count coral species at a large 
number of sites around the island and analysed whether the total species 
number was sufficient to find diversity patterns matching the present 
park zonation. The results may indicate whether species diversity, next 
to park use, should play a balanced role in MPA zonation in other lo-
calities. Because coral species richness was not taken into consideration 
when the zonation of the marine park was planned (Sybesma et al., 
1993) and also not after it became effective, we hypothesized that there 

is no relation between coral species diversity pattern and the present 
marine park zonation at St. Eustatius, for which we used our own survey 
data. For the same reason we also hypothesized the absence of a relation 
between coral species richness and the economic value of reef sites, 
related to fisheries and other activities, for which we used data from the 
literature. 

2. Material and methods 

2.1. Research area 

St. Eustatius (also known as Statia) is located in an island arc be-
tween the Caribbean Sea and the Atlantic Ocean. It is part of the Dutch 
Caribbean, and before October 10, 2010 one of the windward islands of 
the Netherlands Antilles (Hoeksema et al., 2017a). It is surrounded by 
St. Eustatius National Marine Park (SNMP), which covers the shelf area 
from the high-water mark down to the 30-m isobath (Fig. 1). The park 
was established in 1996 and has been managed by the St. Eustatius 
National Parks Foundation (STENAPA) since 1997 (White et al., 2006; 
MacRae and Esteban, 2007; McClellan, 2009). The park was established 
with various aims, including the conservation of marine biodiversity and 
marine productivity, the protection of fish stocks, and the limitation of 
pollution, in order to provide a foundation for a sustainable, 
nature-based tourism (MacRae and Esteban, 2007). 

It covers an area of 27.5 km2, divided over a general-use zone (22.6 
km2) and two no-take reserves, one at northwestern section (1.6 km2) 
and one at the southwestern – southernmost section (3.3 km2). The goals 
of the reserves are to conserve marine biodiversity, protect fish stocks 
and promote sustainable tourism (MacRae and Esteban, 2007). SCUBA 
diving is allowed in and outside the no-take reserves. The purpose of the 
zonation is to conserve the coral reefs, while avoiding conflicts with 
users (Sybesma et al., 1993). In the reserves, coral reefs are protected by 
prohibiting anchoring as well as taking of invertebrates. Fishing would 
be allowed without spearfishing and with deployment of lobster traps 
only during the lobster season and not within 100 m radius from 
mooring buoys (Sybesma et al., 1993). Regarding the latter, the term 
“limited-take zone” might be more appropriate than “no-take reserve”. 
Outside the reserves, anchoring and shipping are less restricted, but 
there are specific anchoring zones (White et al., 2007). Fishing of sea 
turtles is also prohibited here (Smith, 2008). Beaches outside the park 
that are used by sea turtles are also monitored and protected (Berkel, 
2012), but this has no relation with the coral reefs. 

Both reserves are located at the leeward (Caribbean) side of the is-
land. The remaining part of the MPA is a general-use zone that contains 
an oil terminal and a harbor. The oil terminal consists of 50 storage tanks 
(total capacity 1.75 106 m3), three barges and a jetty with a capacity to 
serve two tankers at a time and a total of >1000 yr− 1, while anchoring 
takes place above depths of 24–40 m (White et al., 2007). Therefore, 
many activities of this terminal take place within the boundaries of the 
marine park and form a potential danger to the marine environment, 
especially by oil spills, sedimentation, turbidity, litter, chemicals, and 
shading (Sybesma et al., 1993; Slijkerman et al., 2016). In 2015, the park 
was rezoned: the Northern Reserve became part of the harbor area 
where anchoring is allowed, while the conditions for the Southern 
Reserve did not change (de Graaf et al., 2015). 

2.2. Data sampling 

The survey took place in June 7–27, 2015 during a marine biodi-
versity expedition at 39 localities, 37 of which were accessed by boat 
and two from the shoreline; 24 sites were situated inside the no-take 
reserves and 22 had a maximum depth of >18 m (Fig. 1; Hoeksema, 
2016). Fourteen of the 22 deeper sites were located inside the reserves 
and eight were outside (Fig. 1). Stony corals were recorded and photo-
graphed by two divers at each site down to a maximum of 30 m depth, 
using the roving diver technique in order to score as many species as 
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possible per dive of approximately 60 min, working upward from the 
maximum depth (Hoeksema and Koh, 2009). Most boat-dive localities 
were indicated by buoys as designated dive sites established by STEN-
APA (Esteban, 2005). Per day no more than two dives were made. 

Coral identities were confirmed with the help of various references 
(Zlatarski and Estalella, 1982; Collin et al., 2005; Reyes et al., 2010; 
Carballo-Bolaños et al., 2012; Bright and Lang, 2013; Humann and 
DeLoach, 2013). To avoid the use of invalid synonyms, the nomencla-
ture was updated according to the World List of Scleractinia (of the 
World Register of Marine Species) (Hoeksema and Cairns, 2021). Per 
site, corals of each species were photographed for future verification, if 
possible. A selection of the photographs was mounted into panels to 
serve as reference document for all 49 recorded coral species used in the 
analyses (Electronic Supplementary Material ESM 1). 

2.3. Alpha and beta diversity 

Data on coral species richness and coral species composition per site 
were used to express alpha and beta diversity. Alpha diversity was 
measured as the number of coral species recorded per site and beta di-
versity as the variation in species among sample sites, based on several 
distance matrices (Section 2.5). 

For both species richness and species composition, we tested if there 
were differences between sites: (1) located inside and outside the no- 
take reserves (Fig. 1); (2) with a maximum depth ≤18 m and >18 m 
(Fig. 1), (3) with a fishery value of ≤70 USD ha− 1 y− 1 and >70 USD ha− 1 

y− 1 (Electronic Supplementary Material ESM 2 Fig. S50, ESM 3); (4) 
with a total economic value (TEV) ≤5000 USD ha− 1 y− 1 and >5000 USD 
ha− 1 y− 1 (ESM 2 Fig. S51, ESM 3). Maximum depth (value 2) was 
recorded every dive using a diving computer and indicates the deepest 
point where observations were made, rather than the absolute maximum 
depth possible at the respective sites. To increase reliability, this vari-
able was binned into a factor based on the median (≤18 m and >18 m 

depth). Values of (3) and (4) were taken from Tieskens et al. (2014). The 
fishery value was estimated using the value of various reef fish and 
lobster, allocated to marine habitats around St. Eustatius. Total eco-
nomic value estimates were based on carbon sequestration, local cul-
tural and recreational value, fisheries and tourism. Both fishery value 
and TEV were mapped to the 27.5 km2 St. Eustatius National Marine 
Park using habitat zonation based on seascape video assessments by 
Debrot et al. (2014). Seascape habitat assessments were performed on a 
150 × 200 m2 grid covering the entire marine park. For each of the dive 
sites in this study, we extracted the corresponding values (which were 
reported as categorical variables) from these maps. Statistical analyses 
were performed using R 3.5.1 (R Core Team, 2018). 

2.4. Actual and expected species richness 

A generalized linear model with a Poisson distribution was fitted to 
the data to test for differences in alpha diversity. The model allowed for 
a three-way interaction between maximum depth, presence of a reserve, 
and either fishery value or economic value. Non-significant interactions 
and terms were deleted from the model until a minimum adequate 
model was found. Model assumptions were graphically inspected using 
residual plots from the package car v.2.1-2 (Fox and Weisberg, 2011). 

As coral species richness is hard to measure accurately, the observed 
species richness is usually lower than the true species richness, 
depending on the number of survey sites and the sampling effort per site 
(Hoeksema and Koh, 2009; Waheed and Hoeksema, 2013, 2014). To 
reduce the bias caused by under-sampling and estimate the asymptotic 
species richness, the estimators ICE (incidence coverage-based esti-
mator) and the Chao2 index were calculated with EstimateS v.9.1.0 
(Colwell, 2013). These estimators correct the observed species richness 
by adding a term based on the frequencies of species represented in one 
sample, in two samples or in a few samples (Gotelli and Colwell, 2010). 
Together, they provide a good range of the expected species richness. In 

Fig. 1. Map of the coastal waters of St. Eustatius with 
39 sample sites (numbered, red circles). Circle size 
corresponds with the number of coral species recor-
ded per site. The St. Eustatius National Marine Park 
covers the shelf area from the high-water mark down 
to the 30-m isobath as outher boundary. In addition, 
the 18-m isobath is shown. The northern and southern 
no-take reserves are shaded pink and the rest of the 
park is shaded light grey. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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Table 1 
Stony corals (Scleractinia, Milleporidae, Stylasteridae) recorded at St. Eustatius in 2015, and at Saba, Saba Bank, St. Eustatius, St. Maarten (SSSS) during other surveys: 
a) 1965 (Roos, 1971); b) 1972 (Bak, 1975); c) 1972 (van der Land, 1977); d) 2006 (McKenna and Etnoyer, 2010); e) 2011–2013 (van Beek and Meesters, 2013, 2014; 
Debrot et al., 2014); f) 2015 (Hoeksema et al., 2018; Hoeksema unpubl. data on Saba); g) 2017 (Kitson-Walters, 2017); h) 2019 (Homes, 2021). Records indicated by 
bold script letters indicate differences between the last two columns.   

St. Eustatius SSSS (references a–g) 

2015 1965–2017 

Anthozoa: Scleractinia 
Acroporidae 

Acropora cervicornis (Lamarck, 1816) x a, b, c, d, e, f, g 
Acropora palmata (Lamarck, 1816) x a, b, c, f, h 
Acropora prolifera (Lamarck, 1816) x  

Agariciidae 
Agaricia agaricites (Linnaeus, 1758) x a, b, c, d, e, f, h 
Agaricia fragilis Dana, 1846 x e, f, h 
Agaricia grahamae Wells, 1973  d, e 
Agaricia humilis Verrill, 1901 x d, e, f 
Agaricia lamarcki Milne Edwards & Haime, 1851 x d, e, f, h 
Agaricia tenuifolia Dana, 1846  f 
Helioseris cucullata (Ellis & Solander, 1786) x b, d, e, f 

Astrocoeniidae 
Stephanocoenia intersepta (Esper, 1795) x a, b1, c, d, e, f 

Caryophylliidae 
Colangia immersa Pourtalès, 1871 x f 
Rhizosmilia maculata (Pourtalès, 1874) x  

Dendrophylliidae 
Tubastraea coccinea Lesson, 1830 x a2, b, c2, d, f, g3 

Faviidae: Faviinae 
Colpophyllia breviserialis Milne Edwards & Haime, 1849  e 
Colpophyllia natans (Houttuyn, 1772) x a, b, c, d, e, f, g, h 
Diploria labyrinthiformis (Linnaeus, 1758) x a, b, c, d, e, f, g, h 
Favia fragum (Esper, 1795) x a, b, d, e4, g, h 
Manicina areolata (Linnaeus, 1758) x a, b, c, d, e, g, h 
Pseudodiploria clivosa (Ellis & Solander, 1786) x a5, b5, c5, e5, f, g, h5 

Pseudodiploria strigosa (Dana, 1846) x a6, b6, c6, d6, e6, f, g, h6 

Faviidae: Mussinae 
Isophyllia rigida (Dana, 1846) x a7, b7, c7, d7, e 
Isophyllia sinuosa (Ellis & Solander, 1786) x a8, b9, c, d, e, f 
Mussa angulosa (Pallas, 1766) x b, c, d, e, f 
Mycetophyllia aliciae Wells, 1973 x b, e, f 
Mycetophyllia danaana Milne Edwards & Haime, 1849  e 
Mycetophyllia ferox Wells, 1973  b, g, h 
Mycetophyllia lamarckiana Milne Edwards & Haime, 1849  a, c, e, g 
Scolymia cubensis (Milne Edwards & Haime, 1848) x b, e, f 
Scolymia lacera (Pallas, 1766) x f, h 
Scolymia wellsi Laborel, 1967  e 

Meandrinidae 
Dendrogyra cylindrus (Ehrenberg, 1834) x b, c, d, e, f, h 
Dichocoenia stokesii (Milne Edwards & Haime, 1849) x a, b, c, d, e10, f, g, h 
Eusmilia fastigiata (Pallas, 1766) x a, b, c, d, e, f, g, h 
Meandrina danai (Milne Edwards & Haime, 1848) x d11, f 
Meandrina jacksoni Weil & Pinzón, 2011 x f, g 
Meandrina meandrites (Linnaeus, 1758) x a, b, d, e, f, g, h 

Merulinidae 
Orbicella annularis (Ellis & Solander, 1786) x a12, b12, c12, d12, e12, f, g, h12 

Orbicella faveolata (Ellis & Solander, 1786) x d13, e, f, g, h13 

Orbicella franksi (Gregory, 1895) x d14, e14, f, g, h14 

Montastraeidae 
Montastraea cavernosa (Linnaeus, 1767) x a, b, c, d, e, f, h 

Pocilloporidae 
Madracis auretenra Locke, Weil & Coates, 2007 x b15, d, e15, f 
Madracis decactis (Lyman, 1859) x a, b, d, e, f, g, h 
Madracis formosa Wells, 1973  e 
Madracis pharensis (Heller, 1868) x f 
Madracis senaria Wells, 1973 x f 

Poritidae 
Porites astreoides Lamarck, 1816 x a, b, c, d, e, f, g, h 
Porites branneri Rathbun, 1888  h 
Porites divaricata Le Sueur, 1820 x d, e, f, g16, h 
Porites furcata Lamarck, 1816 x b, e, f, h 
Porites porites (Pallas, 1766) x a, b, c, d, e, f, h 

Rhizangiidae 
Astrangia solitaria (Le Sueur, 1818) x b, c 
Siderastrea radians (Pallas, 1766) x a, b, c, f, g, h 
Siderastrea siderea (Ellis & Solander, 1768) x a, b, d, e, f, g, h 

Scleractinia incertae sedis 
Cladocora arbuscula (Le Sueur, 1820)  b 

(continued on next page) 
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addition, a species accumulation curve was generated to give an esti-
mation of the effectivity of the sampling effort and of the number of 
samples required for a complete assessment (Colwell, 2013). If a hori-
zontal level is reached in such a species accumulation curve, further 
sampling is not likely to yield additional species (Colwell et al., 2004). 

2.5. Species composition: multivariate analyses 

A principal component analysis (PCA) was performed using the 
Vegan v.2.3–5 package (Oksanen et al., 2016). In these plots, sites are 
scaled proportionally to eigenvalues, which means that distances among 
the dots representing a site are approximations of their Euclidean dis-
tances. Therefore, sites close to one another in the PCA plot are likely to 
have similar species compositions and species located close to a point 
representing a site are more likely to be found on that site (Legendre and 
Legendre, 2012). Singletons (species recorded only once) were excluded 
from the analyses. The remaining number of analysed species is 47. 

A permutational analysis of variance (PERMANOVA), based on 10 
000 permutations, was used to test for differences in species composition 
(Anderson, 2001). A PERMANOVA can be based on different distance 
matrices that taking beta diversity into account (Anderson et al., 2011). 
In this study, Jaccard, Euclidean, and Raup-Crick dissimilarities were 
used. Jaccard is one of the most widely used indices for 
presence-absence data and can be interpreted as the probability that two 
species, each drawn at random from two samples, will not be shared 
between these samples (Anderson et al., 2006). However, the Jaccard 
dissimilarity measure is not embedded in the Euclidean space and it does 
not take joint-absences into account, pertaining to species that are 
missing at both sites (Anderson et al., 2011). This means that sites are 

not considered more similar if they both lack certain species. However, 
including joint-absences (using a Euclidean distance measure) can give 
additional information when testing hypotheses on the disappearance of 
species (e.g. in testing the effect of marine reserves or stochastic events). 
Both Jaccard and Euclidean distance measures depend at least to some 
extent on the alpha richness of the samples compared. The probabilistic 
Raup-Crick index depends on the number of species missing in both sites 
(Anderson et al., 2011), controlling for differences in alpha diversity. 
When a and b are the number of species on the compared sites and c the 
number of species occurring on both compared sites, the distance 
matrices are calculated using the vegdist function as follows (Oksanen 
et al., 2016): 

Jaccard  dissimilarity  =  (a+ b − 2c)/(a+ b − c)

Euclidean  dissimilarity  =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a + b − 2c

√

Raup − Crick  dissimilarity  = 1 − prob(c)

The PERMANOVA model allowed for a three-way interaction be-
tween maximum depth, presence of a reserve, and either economic or 
fishery value. Non-significant interactions and terms were sequentially 
deleted from the model until a minimum adequate model was found. A 
PERMANOVA assumes that the multivariate spread is equal among 
groups. This was tested with the betadisper function and with the visual 

Table 1 (continued )  

St. Eustatius SSSS (references a–g) 

2015 1965–2017 

Solenastrea bournoni Milne Edwards & Haime, 1849 x b, h 
Solenastrea hyades (Dana, 1846)  e, g, h 

Hydrozoa 
Milleporidae 

Millepora alcicornis Linnaeus, 1758 x a, c, d, e, f, h 
Millepora complanata Lamarck, 1816 x a, c, e, f, h 
Millepora squarrosa Lamarck, 1816  c, e 

Stylasteridae 
Stylaster roseus (Pallas, 1766) x f 

Total number 49 59 

Notes: species were originally recorded as: 1) Stephanocoenia michelini Milne Edwards & Haime, 1848; 2) Tubastraea tenuilamellosa (Milne Edwards & Haime, 1848); 3) 
Tubastraea aurea (Quoy & Gaimard, 1833); 4) Favia leptophylla Verrill, 1868 = Mussimila leptophylla (Verrill, 1868); 5) Diploria clivosa (Ellis & Solander, 1786); 6) 
Diploria strigosa (Dana, 1846); 7) Isophyllastrea rigida (Dana, 1846); 8) Isophyllastrea sinuosa (Ellis & Solander, 1786); 9) Isophyllia multiflora Verill, 1902; 10) Dicho-
coenia stellaris Milne Edwards & Haime, 1848; 11) Meandrina brasiliensis (Milne Edwards & Haime, 1848); 12) Montastrea annularis (Ellis & Solander, 1786); 13) 
Montastraea faveolota (Ellis & Solander, 1786); 14) Montastrea franksi (Gregory, 1895); 15) Madracis mirabilis (Duchassaing & Michelotti, 1860); 16) Porites digitate 
(misspelling). 
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Fig. 2. Sample-based rarefaction curve with the Mau Tao estimator of expected 
richness (solid curve) and 95% confidence intervals (dashed curves). 

Fig. 3. Bar plot with observed species richness at sample sites located outside 
and inside the no-take reserves. Data are displayed as mean ± SE. 
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inspection of dispersion plots (Anderson, 2006; Oksanen et al., 2016). 

3. Results 

3.1. Species richness (alpha diversity) and expected species richness 

In total, 49 stony coral species were recorded, including 46 scler-
actinians, two milleporids and one stylasterid (Table 1; Electronic Sup-
plementary Material ESM 1). The present records were compared with 
those of other reef surveys in the eastern Dutch Caribbean (the former 
windward Netherlands Antilles), which were executed in the period 
1965–2017 and showed a total of 59 species (Table 1). The new records 
made in 2015 only concerned Acropora prolifera and Rhizosmilia mac-
ulata. Various species that were not retrieved are discussed later (Section 
4.4). 

Accumulation curves for the species numbers increased steadily over 
the first ten sample locations and approached a horizontal asymptote 
after approximately 27 (of 39) sample locations (Fig. 2). This indicated 
that 27 dives were sufficient to sample the full coral species assemblage 
around St. Eustatius. The expected species richness based on the ICE 
estimator was 51 ± 0 and based on the Chao2 estimator 51 ± 2.5. 

Poisson regressions showed that maximum depth (p = 0.973), total 
economic value (p = 0.715) and fisheries value (p = 0.409) were not 

significantly correlated with observed coral species richness (data in 
Electronic Supplementary Material ESM 2). However, marine park 
zonation was significantly linked to increased stony coral species di-
versity (p = 0.003; Poisson model). The mean number of observed 
species on sites situated within a no-take reserve (26 ± 0.6 SE) was 
higher than on sites located outside the reserves (21 ± 1.5 SE) (Fig. 3). 

3.2. Species composition: multivariate analyses 

Acropora prolifera (<2 m depth outside the reserves) and Colangia 
immersa (>18 m depth inside a reserve) were singletons and excluded 
from the multivariate analysis; therefore, the number of analysed coral 
species is 47 instead of the 49 listed in Table 1. All recorded coral species 
were found inside the reserves (24 sites) and all but one outside the 
reserve (15 sites), the missing one being the shallow-water coral Orbi-
cella annularis (Electronic Supplementary Material ESM 4; Fig. 4). The 
azooxanthellate coral Rhizosmilia maculata was not found at the 17 
shallow sites (≤18 m) and the zooxanthellate species Favia fragum and 
Orbicella annularis were not observed at the 22 deeper sites (>18 m; 
Fig. 4; Electronic Supplementary Material ESM 5). Four species were 
found at all dive sites: Madracis decactis, Millepora alcicornis, Porites 
astreoides, and Siderastrea siderea (Fig. 4). 

Results of the PCA for coral species composition data showed a 

Fig. 4. Heatmap showing proportional presence of coral species in-and outside the no-take reserves (red bars) and in relation to maximum depth (blue bars). Colours 
vary from 1.00 with the species present in 100% of the sites, to 0.00 with species absent at all sites. For example, Orbicella annularis was absent in all sites outside the 
reserve and at all sites with max. depth >18 m, but could be found in 21% of the sites located within the no-take reserves, and in 30% of the shallow sites. Overall, the 
sites inside the reserves showed a higher presence of species than those outside. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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separation between sites located inside and outside a reserve, and be-
tween sites with a maximum depth ≤18 m versus maximum depth >18 
m (Fig. 5). The variation in the presence of a marine reserve is mainly 
expressed across the horizontal PCA axis (most of the sites located 
outside the reserve clustered towards the right of the plot, whereas most 
of the sites located within the reserves were clustered towards the left) 
(Fig. 5). Variation across maximum depth is mainly expressed across the 

second axis (vertical axis), as most shallow sites clustered towards the 
top and the deeper sites clustered towards the bottom (Fig. 5). No 
distinct pattern can be observed between coral species composition with 
either fishery value or total economic value (Fig. 6). 

Results from the PERMANOVA yielded similar observations: total 
economic value and fishery value did not significantly affect coral spe-
cies composition based on any of the three dissimilarity indices (Jaccard, 

Fig. 5. Principal component analysis (PCA) visualization of coral fauna compositions comparing sites inside reserves with those outside, and sites at shallow sites 
(max. depth ≤18 m) and deep sites (max. depth >18 m). Indicator species explaining most of the variability are mentioned. 

Fig. 6. Principal component analysis (PCA) visualization of coral species composition, with sites that have an estimated fishery value of ≤70 USD ha− 1 y− 1 and sites 
that have an estimated fishery value of >70 USD ha− 1 y− 1, as well as sites that have an estimated total economic value of ≤5000 USD ha− 1 y− 1 and the sites that have 
an estimated total economic value of >5000 USD ha− 1 y− 1. No significant distinctions can be seen between values (Table 2). 
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Euclidean, and Raup-Crick) (p > 0.05, Table 2). Both maximum depth 
and marine reserve boundaries significantly affected species composi-
tion based on the Jaccard and Euclidean distances (p < 0.01 and p <
0.03, Table 2). However, based on the Raup-Crick dissimilarity index, 
only maximum depth had a significant effect (p < 0.001, Table 2), as 
that of no-take reserve presence was marginally non-significant (p =
0.075, Table 2). 

Distinguishing species (explaining most of the variability in the PCA) 
included, in order of decreasing importance: Siderastrea radians, Orbi-
cella franksi, Dendrogyra cylindrus, Millepora complanata, Stylaster roseus, 
Meandrina jacksoni, Agaricia lamarcki, Mycetophyllia aliciae, Orbicella 
faveolata, Favia fragum, Agaricia humilis, Pseudodiploria clivosa, Helioseris 
cucullata, Madracis pharensis and Scolymia cubensis (Figs. 5 and 6). Of 
these species, D. cylindrus, S. roseus, M. aliciae, O. faveolata, H. cucullata, 
and M. pharensis were found most frequently at sites inside a marine 
reserve (Fig. 4). Orbicella franksi was even observed almost exclusively 
inside reserves. On the other hand, the shallow-water species Siderastrea 
radians and Pseudodiploria clivosa were found more frequently outside 
the reserves (Fig. 4). Agaricia. lamarcki, Madracis pharensis, Mycetophyllia 
aliciae, and S. cubensis were most commonly recorded at deeper sites 
(max. depth >18 m), whereas S. radians, M. complanata, F. fragum, A. 
humilis, and P. clivosa were predominantly found at shallow sites (max. 
depth ≤18 m) (Fig. 4). 

There are some remarkable records, which were rare and did not 
contribute substantially to the variability of the PCA, or not at all. One of 
these is Acropora prolifera as a new record for St. Eustatius (Table 1), 
which was found in very shallow water (<2 m depth) at a single locality 
near the shoreline and outside the reserves. As a singleton it was not 
included in the PCA. Because most dives were offshore, the shallow- 
water species Favia fragum and Pseudodiploria clivosa were only recor-
ded five and six times, respectively. The free-living species Manicina 
areolata and Meandrina danai were found in both depth categories, in-
side and outside the reserves, and also did not contribute to the vari-
ability of the PCA (Fig. 5). 

4. Discussion 

4.1. Coral species diversity pattern in relation to park zonation 

An important outcome of this study is that the species richness of 
stony corals at St. Eustatius is significantly higher at dive localities sit-
uated inside the reserves than at those outside. Because corals are the 
main reef builders and many other reef-dwelling species depend on them 
for their existence (Stella et al., 2011), it is important that their diversity 
is optimally covered by MPA zonation. In St. Eustatius, the local pres-
ence of lava flows as foundation for coral growth is important herein 
because of their rugosity, which support reef communitities,even in 
water less than 4 m deep (Hill et al., 2021; Hoeksema and ten Hove, 
2017; Lymperaki et al., 2022). 

Fisheries management was originally considered the most important 
reason for the establishment of the marine reserves of St. Eustatius 

(White et al., 2006), while coral diversity has so far not been considered 
for the park design. Nevertheless, the complexity of habitat structure is 
viewed of paramount importance for the local fish assemblages (van 
Kuijk et al., 2015) and elsewhere (Hackradt et al., 2011; Rees et al., 
2018). Since stony corals are important contributors in the formation of 
this habitat structure, it is relevant to consider that coral species 
composition may be an important factor herein, in addition to coral 
cover (Öhman and Rajasuriya, 1998; Komyakova et al., 2013; Chaput 
et al., 2019). A higher coral diversity supports a higher fish species di-
versity, although this may predominantly benefit small-bodied and 
relative rare fish species (Brandl et al., 2018; Richardson et al., 2017; 
Cardoso et al., 2020). These small species are also important in the food 
web of reefs (Brandl et al., 2019), where they find shelter in worm holes 
or between coral branches and tentacles. This is well studied on 
Indo-Pacific reefs (Tornabene et al., 2013; Wilson et al., 2013; Bos and 
Hoeksema, 2015) but less so in the Caribbean, except for the general reef 
environment, depth, and microhabitats (Greenfield and Johnson, 1999; 
Harborne et al., 2012; Böhm and Hoeksema, 2017). As for St. Eustatius, 
fish censuses are relatively poor in cryptobenthic species, which is likely 
related to an observation bias (Davies and Piontek, 2017; Robertson 
et al., 2020). 

Although coral species composition (beta diversity) differed both 
with no-take reserves as well as maximum depth based on a Jaccard and 
Euclidean distance matrix, the Raup-Crick distance matrix only showed 
differences in species composition with maximum depth. Both Jaccard 
and Euclidean distance matrixes depend to some extent on species 
richness (alpha diversity), whereas Raup-Crick (a probabilistic index) 
controls for differences in alpha diversity. This indicates that species 
richness patterns are largely different in- and outside marine reserve 
boundaries, and species composition is mainly affected by maximum 
depth. In total, PCA axis 1 and 2 explained 30% of the variation. As coral 
reef habitats are complex ecosystems, additional environmental factors 
are likely to play a role in species richness and composition. 

4.2. Coral species richness pattern in relation to economic value 

Not all commercial fish species in coral reef areas depend on reef 
corals and especially not on coral species composition when pelagics are 
considered (Arai, 2015). This may explain why no distinct relation was 
observed between fisheries value and coral fauna. The relation between 
fish diversity and coral diversity needs further investigation, stressing 
the difference between species with and without commercial impor-
tance. On the other hand, since fisheries is forbidden in the no-take re-
serves and a relation between species composition and zonation was 
found, a relation between coral species composition and fisheries value 
cannot be excluded. 

The total economic value of dive sites does not show a relation with 
coral species composition as well. The total economic value also in-
volves income from dive tourism, which benefits from coral reef di-
versity. However, dive operators usually do not consider coral fauna 
composition in their selection of dive sites but instead value specific 

Table 2 
Statistics (F-value, R2, and permutational p-value) of a PERMANOVA with 10,000 permutations used for F-tests based on coral species beta diversity related to 
associated environmental variables (fishery value, total economic value, maximum depth and the presence of a no-take reserve; Electronic Supplementary Material 
ESM 2–5) using three dissimilarity indices: Jaccard, Euclidean and Raup-Crick. P-values of individual factors are not reported if they participate in a significant 
interaction. * Significant values are printed in bold.  

Factor Jaccard Euclidean Raup-Crick 

R2 F model p-value R2 F model p-value R2 F model p-value 

Maximum depth: no-take reserve (interaction) 0.06 2.84 0.004 0.04 1.79 0.029 0.09 10.00 0.06 
Maximum depth – – – – – – 0.49 56.55 <0.001 
No-take reserve – – – – – – 1.00 11.28 0.075 
Fishery value 0.02 0.88 0.552 0.02 1.01 0.416 0.07 7.80 0.136 
Total economic value 0.03 1.58 0.103 0.03 1.48 0.084 − 0.03 − 3.75 0.864 
Residuals 0.69 – – 0.75 – – 0.29 – –  
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attractions, such as ship wrecks, archeological objects, and iconic or rare 
species. The latter could be important for underwater photographers 
who look for small, cryptic species (Uyarra and Côté, 2007; De Brauwer 
et al., 2017; Giglio et al., 2018). Eventually, the choice of dive sites may 
depend on how diving tourists perceive environmental quality (Petro-
sillo et al., 2007) and most of them may not have an adequate idea of 
biodiversity (Spash, 2000). 

4.3. Variation in coral diversity 

The species number observed in the present survey (49 stony corals, 
including 46 scleractinians) is not easily compared with species numbers 
found in other Caribbean areas, such as the leeward islands of the 
southern Dutch Caribbean with 57 scleractinians (Bak, 1975) and 
Yucatan, Mexico, also in the southern Caribbean, with 41 scleractinians 
(Ward et al., 2006). Although the reefs in the eastern (windward) 
Caribbean are considered less developed and poorer in species than 
those in the southern (leeward) Caribbean (Bak, 1975, 1977), it appears 
that much of the spatial and temporal variation in recorded coral species 
richness in the Caribbean depends on the inclusion of small azoox-
anthellate corals, whose species names were considered valid or invalid 
at the time of recording, and on possible misidentifications (Table 1). 
Most of the azooxanthellate coral species at depths <30 m are cryptic by 
being small, hidden and uncommon (Cairns, 2000; Santodomingo et al., 
2013). Therefore, they can easily be missed during reef surveys. For 
instance, the absence of the azooxanthellate coral species Phyllangia 
americana Milne Edwards and Haime, 1849 (Table 1), is remarkable, 
since it is commonly found in the Caribbean, especially on manmade 
substrates (Cairns, 2000; Durán-Fuentes et al., 2021). Also, the recog-
nition of some zooxanthellate species, such as several Madracis species, 
requires close inspection. 

Based on earlier surveys and the present results, the list of species 
records from the eastern Dutch Caribbean totals up to 61, including two 
new ones. The record of 49 from the present survey is much lower than 
the total of 59 of the other ones (Table 1). This gap is partly due to 
different opinions regarding species identifications (Cortés-Useche et al., 
2019). Indeed, there still is uncertainty in the identity and distribution of 
some Caribbean and other Atlantic reef coral species (Prada et al., 2014; 
De Souza et al., 2017; Hoeksema et al., 2019b). An integrative 
molecular-morphological approach may help to solve such species 
problems (Kitahara et al., 2016), such as in the genus Mycetophyllia 
Milne Edwards & Haime 1848. This genus consists of five extant species 
(Hoeksema and Cairns, 2021), four of which were previously recorded 
from the eastern Caribbean, while in the present survey only M. aliciae 
was found (Table 1). 

Some records of the genus Scolymia Haime 1852, with three extant 
species (Hoeksema and Cairns, 2021), are also disputable. Scolymia 
wellsi is originally described from Brazil and therefore its previous re-
cord from the eastern Caribbean (Table 1) and other Caribbean localities 
is uncertain (e.g. Zlatarski and Estalella, 1982; Collin et al., 2005; 
Carballo-Bolaños et al., 2012; Humann and DeLoach, 2013). Due to the 
similarity between juvenile Mussa angulosa and Scolymia spp. (Fenner, 
1993; Neves et al., 2006), it is possible that some of the earlier records of 
Scolymia species concern Mussa angulosa. Mussismilia leptophylla (Verrill, 
1868), previously reported from Saba Bank as Favia leptophylla 
(Table 1), is also endemic to Brazil (Nunes et al., 2008). This erroneous 
historical record may be a based on a misidentified Dichocoenia stokesii. 

Acropora prolifera, which was found in very shallow water, represents 
a new record for St. Eustatius (Table 1, Electronic Supplementary Ma-
terial ESM 1 Fig. S3). However, it is not new for the eastern Caribbean 
(Japaud et al., 2014). Acropora prolifera is actually a hybrid form of 
A. cervicornis and A. palmata, but it is treated as a taxon of its own with 
the capacity to live in sediment-rich environments (Japaud et al., 2014; 
Aguilar-Perera and Hernández-Landa, 2018; Zlatarski and Greenstein, 
2020). Perhaps particular conditions allow this shallow-water taxon to 
increase its abundance and densities, which may explain the present 

new record at St. Eustatius. Another explanation is that shallow reef 
zones (<4 m depth) are not surveyed sufficiently. Some common spe-
cies, such as Siderastrea radians and Pseudodiploria clivosa, both typical 
for shallow depths at St. Eustatius (Hill et al., 2021), were also found 
most frequently outside the reserves (Electronic Supplementary Material 
ESM 4). 

Among coral species that were representative for the two no-take 
reserves, Helioseris cucullata stood out by being common at St. Eusta-
tius (14 out of 39 sites, 12 inside reserves). At other Caribbean localities 
declines in abundance of this species have been observed in the last two 
decades (Hughes and Tanner, 2000; Vermeij et al., 2011; Miller et al., 
2016). This species has a relatively rich associated fauna at St. Eustatius 
(Hoeksema et al., 2017b, 2022b) and is competitive in interactions with 
sponges (García-Hernández et al., 2017). Protection of its population is 
served by maintaining the present park zonation at St. Eustatius. 

4.4. Importance of depth range in reef conservation strategies 

The difference in coral species composition between shallow reefs 
(maximum depth ≤18 m) and reefs with maximum depths >18 m im-
plies that for conserving maximum species diversity, both shallow and 
deep reef habitats should be included in the reserves. At St. Eustatius, 
the shallow reef environments are nearshore, whereas the deep ones are 
more remote and only accessible by boat. For instance, Favia fragum and 
Pseudodiploria clivosa are common at wave-exposed reefs less than 4 m 
deep (Hoeksema et al., 2020; Hill et al., 2021). On the other hand, all 
records of the free-living coral Meandrina danai came from depths >18 
m, where it usually occurs on flat, sandy substrates (Meesters et al., 
2013; Hoeksema et al., 2018). Depth and substrate were also an 
important factor for the distribution of algae around St. Eustatius. This 
makes sense because like corals, they also depend on light, wave action 
and type of seabed (van der Loos et al., 2017). 

To be rich in coral species, a site should ideally have a depth profile 
ranging from shallow reef flats to deep slopes, like at Saba (the island 
adjacent to St. Eustatius), where 42 stony coral species were observed 
during nine dives in a depth interval from 1 to 30 m at a single site 
(Ladder Bay at 7◦37′34′′N 63◦15′37′′W, November 2015; Table 1). The 
importance of bathymetric range as a contributing factor to habitat di-
versity has also been found in other reef coral diversity studies (Huston, 
1985; Cleary et al., 2005; Hoeksema and Giyanto, 2019a; Roberts et al., 
2019). This factor should therefore preferably be considered in the 
planning of marine park zonation. 

5. Conclusions 

The present study examines the relation of coral diversity patterns 
and marine park zonation and the economic value of reefs around St. 
Eustatius, a small island in the eastern Caribbean, with fisheries and 
tourism as sources of income. Coral species richness was highest in no- 
take reserves and species composition was mainly affected by 
maximum diving depth. 

Coral species richness is usually not considered in the design of MPAs 
in reef areas, which are known for their high marine biodiversity 
(Hoeksema, 2007; Plaisance et al., 2011) and need for conservation 
(Huang et al., 2016; Asaad et al., 2018). The present study, which is 
based on one month of fieldwork, shows (in retrospect) that coral di-
versity could have been used as a contributing element in the design of 
Statia’s MPA zonation. This is supported by the role of corals in 
providing food, shelter and substrate to other reef species. 

Therefore, it is recommended that in the future design of marine park 
zonation in reef areas, coral diversity should be taken into consideration 
(Becking et al., 2006; Cleary et al., 2006; Waheed et al., 2015). This is 
best served by including areas with environmental gradients that vary in 
wave exposure, depth, and sedimentation (Cleary et al., 2005; Gitten-
berger et al., 2015). 

Coral diversity appears not to be linked the economic value of 
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individual dive sites. With regard to the profitability of the diving in-
dustry, this may not be relevant because diving tourists usually aim for 
variation of dive sites and underwater landscapes in the entire area that 
they visit. Our hypothesis that there is no relation between coral di-
versity patterns and the marine park zonation at St. Eustatius is rejected. 
The hypothesis that there is no relation between coral diversity patterns 
and the economic value of reef sites could not be rejected. 
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