Science

One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts

The conservation status of 845 zooxanthellate reef-building coral species was assessed by using International Union for Conservation of Nature Red List Criteria. Of the 704 species that could be assigned conservation status, 32.8% are in categories with elevated risk of extinction. Declines in abundance are associated with bleaching and diseases driven by elevated sea surface temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances. The proportion of corals threatened with extinction has increased dramatically in recent decades and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest proportion of species in all categories of elevated extinction risk. Our results emphasize the widespread plight of coral reefs and the urgent need to enact conservation measures. 

Date
2008
Data type
Scientific article
Theme
Research and monitoring
Journal

Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs

Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna. This “sponge loop” was confirmed in aquarium and in situ food web experiments, using 13C- and 15N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as coral reefs persist in oligotrophic seas—the reef’s paradox—and has implications for reef ecosystem functioning and conservation strategies. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Corals Chemically Cue Mutualistic Fishes to Remove Competing Seaweeds

Corals in the genus Acropora generate much of the structural complexity upon which coral reefs depend, but they are susceptible to damage from toxic seaweeds. Acropora nasuta minimizes this damage by chemically cuing symbiotic goby fishes (Gobiodon histrio or Paragobiodon echinocephalus) to remove the toxic seaweed Chlorodesmis fastigiata. Within minutes of seaweed contact, or contact from only seaweed chemical extract, the coral releases an odor that recruits gobies to trim the seaweed and dramatically reduce coral damage that would otherwise occur. In turn, chemically defended gobies become more toxic after consumption of this noxious alga. Mutualistic gobies and corals appear to represent a marine parallel to terrestrial ant-plants, in that the host provides shelter and food in return for protection from natural enemies

Date
2012
Data type
Scientific article
Theme
Research and monitoring
Journal