PLoS ONE

Population Genetic Structure, Abundance, and Health Status of Two Dominant Benthic Species in the Saba Bank National Park, Caribbean Netherlands: Montastraea cavernosa and Xestospongia muta

Saba Bank, a submerged atoll in the Caribbean Sea with an area of 2,200 km2, has attained international conservation status due to the rich diversity of species that reside on the bank. In order to assess the role of Saba Bank as a potential reservoir of diversity for the surrounding reefs, we examined the population genetic structure, abundance and health status of two prominent benthic species, the coral Montastraea cavernosa and the sponge Xestospongia muta. Sequence data were collected from 34 colonies of M. cavernosa (nDNA ITS1-5.8S-ITS2; 892 bp) and 68 X. muta sponges (mtDNA I3-M11 partition of COI; 544 bp) on Saba Bank and around Saba Island, and compared with published data across the wider Caribbean. Our data indicate that there is genetic connectivity between populations on Saba Bank and the nearby Saba Island as well as multiple locations in the wider Caribbean, ranging in distance from 100s–1000s km. The genetic diversity of Saba Bank populations of M. cavernosa (π = 0.055) and X. muta (π = 0.0010) was comparable to those in other regions in the western Atlantic. Densities and health status were determined along 11 transects of 50 m2 along the south-eastern rim of Saba Bank. The densities of M. cavernosa (0.27 ind. m-2, 95% CI: 0.12–0.52) were average, while the densities of X. muta (0.09 ind. m-2, 95% CI: 0.02–0.32) were generally higher with respect to other Caribbean locations. No disease or bleaching was present in any of the specimens of the coral M. cavernosa, however, we did observe partial tissue loss (77.9% of samples) as well as overgrowth (48.1%), predominantly by cyanobacteria. In contrast, the majority of observed X. muta (83.5%) showed signs of presumed bleaching. The combined results of apparent gene flow among populations on Saba Bank and surrounding reefs, the high abundance and unique genetic diversity, indicate that Saba Bank could function as an important buffer for the region. Either as a natural source of larvae to replenish genetic diversity or as a storehouse of diversity that can be utilized if needed for restoration practices.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Saba bank

Defining and Dividing the Greater Caribbean: Insights from the Biogeography of Shorefishes

The Greater Caribbean biogeographic region is the high-diversity heart of the Tropical West Atlantic, one of four global centers of tropical marine biodiversity. The traditional view of the Greater Caribbean is that it is limited to the Caribbean, West Indies, southwest Gulf of Mexico and tip of Florida, and that, due to its faunal homogeneity, lacks major provincial subdivisions. In this scenario the northern 2/3 of the Gulf of Mexico and southeastern USA represent a separate temperate, “Carolinian” biogeographic region. We completed a comprehensive re-assessment of the biogeography of the Greater Caribbean by comparing the distributions of 1,559 shorefish species within 45 sections of shelf waters of the Greater Caribbean and adjacent areas. This analysis shows that that the Greater Caribbean occupies a much larger area than usually thought, extending south to at least Guyana, and north to encompass the entire Carolinian area. Rather than being homogenous, the Greater Caribbean is divided into three major provinces, each with a distinctive, primarily tropical fauna: (1) a central, tropical province comprising the West Indies, Bermuda and Central America; (2) a southern, upwelling-affected province spanning the entire continental shelf of northern South America; and (iii) a northern, subtropical province that includes all of the Gulf of Mexico, Florida and southeastern USA. This three-province pattern holds for both reef- and soft bottom fishes, indicating a general response by demersal fishes to major variation in provincial shelf environments. Such environmental differences include latitudinal variation in sea temperature, availability of major habitats (coral reefs, soft bottom shorelines, and mangroves), and nutrient additions from upwelling areas and large rivers. The three-province arrangement of the Greater Caribbean broadly resembles and has a similar environmental basis to the provincial arrangement of its sister biogeographic region, the Tropical Eastern Pacific.

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Connectivity across the Caribbean Sea: DNA Barcoding and Morphology Unite an Enigmatic Fish Larva from the Florida Straits with a New Species of Sea Bass from Deep Reefs off Curaçao

Integrative taxonomy, in which multiple disciplines are combined to address questions related to biological species diversity, is a valuable tool for identifying pelagic marine fish larvae and recognizing the existence of new fish species. Here we combine data from DNA barcoding, comparative morphology, and analysis of color patterns to identify an unusual fish larva from the Florida Straits and demonstrate that it is the pelagic larval phase of a previously undescribed species of Liopropoma sea bass from deep reefs off Curaçao, southern Caribbean. The larva is unique among larvae of the teleost family Serranidae, Tribe Liopropomini, in having seven elongate dorsal-fin spines. Adults of the new species are similar to the golden bass, Liopropoma aberrans, with which they have been confused, but they are distinct genetically and morphologically. The new species differs from all other western Atlantic liopropomins in having IX, 11 dorsal-fin rays and in having a unique color pattern–most notably the predominance of yellow pigment on the dorsal portion of the trunk, a pale to white body ventrally, and yellow spots scattered across both the dorsal and ventral portions of the trunk. Exploration of deep reefs to 300 m using a manned submersible off Curaçao is resulting in the discovery of numerous new fish species, improving our genetic databases, and greatly enhancing our understanding of deep-reef fish diversity in the southern Caribbean. Oh the mother and child reunion is only a moment away. 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems

Abtsract
This study describes in vivo cell turnover (the balance between cell proliferation and cell loss) in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2′-deoxyuridine (BrdU) and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for Chondrosia reniformis). Apoptosis was identified using an antibody against active caspase-3. Cell loss through shedding was studied quantitatively by collecting and weighing sponge-expelled detritus and qualitatively by light microscopy of sponge tissue and detritus. All species investigated displayed substantial cell proliferation, predominantly in the choanoderm, but also in the mesohyl. The majority of coral reef species (five) showed between 16.1±15.9% and 19.0±2.0% choanocyte proliferation (mean±SD) after 6 h and the Mediterranean species, C. reniformis, showed 16.6±3.2% after 10 h BrdU-labeling. Monanchora arbuscula showed lower choanocyte proliferation (8.1±3.7%), whereas the mangrove species Mycale microsigmatosa showed relatively higher levels of choanocyte proliferation (70.5±6.6%). Choanocyte proliferation in Haliclona vansoesti was variable (2.8–73.1%). Apoptosis was negligible and not the primary mechanism of cell loss involved in cell turnover. All species investigated produced significant amounts of detritus (2.5–18% detritus bodyweight−1·d−1) and cell shedding was observed in seven out of eight species. The amount of shed cells observed in histological sections may be related to differences in residence time of detritus within canals. Detritus production could not be directly linked to cell shedding due to the degraded nature of expelled cellular debris. We have demonstrated that under steady-state conditions, cell turnover through cell proliferation and cell shedding are common processes to maintain tissue homeostasis in a variety of sponge species from different ecosystems. Cell turnover is hypothesized to be the main underlying mechanism producing sponge-derived detritus, a major trophic resource transferred through sponges in benthic ecosystems, such as coral reefs.

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Tags
Journal
Geographic location
Curacao

Molecular and Morphological Species Boundaries in the Gorgonian Octocoral Genus Pterogorgia (Octocorallia: Gorgoniidae)

 

Abstract

Most gorgonian octocoral species are described using diagnostic characteristics of their sclerites (microscopic skeletal components). Species in the genus Pterogorgia, however, are separated primarily by differences in their calyx and branch morphology. Specimens of a morphologically unusual Pterogorgia collected from Saba Bank in the NE Caribbean Sea were found with calyx morphology similar to P. citrina and branch morphology similar to P. guadalupensis. In order to test morphological species boundaries, and the validity of calyx and branch morphology as systematic characters, a phylogenetic analysis was undertaken utilizing partial gene fragments of three mitochondrial (mtMutS, cytochrome b, and igr4; 726bp total) and two nuclear (ITS2, 166bp; and SRP54 intron, 143bp) loci. The datasets

for nuclear and mitochondrial loci contained few phylogenetically informative sites, and
tree topologies did not resolve any of the morphological species as monophyletic groups. Instead, the mitochondrial loci and SRP54 each recovered two clades but were slightly incongruent, with a few individuals of P. guadalupensis represented in both clades with SRP54. A concatenated dataset of these loci grouped all P. anceps and P. guadalupensis in a clade, and P. citrina and the Pterogorgia sp. from Saba Bank in a sister clade, but with minimal variation/resolution within each clade. However, in common with other octocoral taxa, the limited genetic variation may not have been able to resolve whether branch varia- tion represents intraspecific variation or separate species. Therefore, these results suggest that there are at least two phylogenetic lineages of Pterogorgia at the species level, and
the atypical Pterogorgia sp. may represent an unusual morphotype of P. citrina, possibly endemic to Saba Bank. Branch morphology does not appear to be a reliable morphological character to differentiate Pterogorgia species (e.g., branches “flat” or “3–4 edges” in P. gua- dalupensis and P. anceps, respectively), and a re-evaluation of species-level characters (e.g., sclerites) is needed. 

 

Date
2015
Data type
Scientific article
Journal
Geographic location
Saba

Organic Matter Degradation Drives Benthic Cyanobacterial Mat Abundance on Caribbean Coral Reefs

Abstract

Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient con- centrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, sub- strate-linked release of nutrients from the microbial degradation of organic matter. This hy- pothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sedi- ments enriched with organic matter (Spirulina). We propose that nutrient runoff from urban- ised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degra- dation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs. 

 

Date
2015
Data type
Scientific article
Journal
Geographic location
Curacao

Natural Diet of Coral-Excavating Sponges Consists Mainly of Dissolved Organic Carbon (DOC)

Abstract:

Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC) as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC) in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean6SD; 13617 mmol L21) and 76% (C. delitrix; 10612 mmol L21) of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton) despite high bacteria retention efficiency (72615% and 87610%). Siphonodictyon sp. and C. delitrix removed DOC at a rate of 4616773 and 3546562 mmol C h21 respectively. Bacteria removal was 1.860.961010 and 1.760.661010 cells h21, which equals a carbon uptake of 46.0621.2 and 42.5614.0 mmol C h21 respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC) on reefs as a result of the ongoing coral-algal phase shift. 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Prevalence of External Injuries in Small Cetaceans in Aruban Waters, Southern Caribbean

Abstract:

Aruba, located close to the coasts of Colombia and Venezuela, is one of the most densely populated islands in the Caribbean and supports a wide range of marine-related socio-economic activities. However, little is known about the impacts of human activities on the marine environment. Injuries in marine mammals can be used to examine interactions with human activities and identify potential threats to the survival of populations. The prevalence of external injuries and tooth rake marks were examined in Atlantic spotted dolphin (Stenella frontalis) (n=179), bottlenose dolphin (Tursiops truncatus) (n=76) and false killer whale (Pseudorca crassidens) (n=71) in Aruban waters using photo identification techniques. Eleven injury categories were defined and linked to either human-related activities or natural causes. All injury categories were observed. In total, 18.7% of all individuals had at least one injury. Almost half (41.7%) of the injuries could be attributed to human interactions, of which fishing gear was the most common cause (53.3%) followed by propeller hits (13.3%). Major disfigurements were observed in all three species and could be attributed to interactions with fishing gear. The results of this study indicate that fishing gear and propeller hits may pose threats to small and medium-sized cetaceans in Aruban waters. Thus, long-term monitoring of population trends is warranted. Shark-inflicted bite wounds were observed in Atlantic spotted dolphin and bottlenose dolphin. Bite wounds of cookie cutter sharks (Isistius sp.) were recorded in all three species, and include the first documented record of a cookie cutter shark bite in Atlantic spotted dolphin. This is one of the few studies which investigates the prevalence of injuries in cetaceans in the Caribbean. Further study is necessary to determine to which extent the injuries observed in Aruba affect the health and survival of local populations. 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Aruba

What Doesn’t Kill You Makes You Wary? Effect of Repeated Culling on the Behaviour of an Invasive Predator

Abstract:

As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs. 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal

Native Predators Do Not Influence Invasion Success of Pacific Lionfish on Caribbean Reefs

Abstract:

Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal