PeerJ

Variation in habitat soundscape characteristics influences settlement of a reef-building coral

Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Occurrence patterns of coral-dwelling gall crabs (Cryptochiridae) over depth intervals in the Caribbean.

Coral-associated invertebrates form a major part of the diversity on reefs, but their distribution and occurrence patterns are virtually unstudied. For associated taxa data are lacking on their distribution across shelves and environmental gradients, but also over various depths. Off Curaçao we studied the prevalence and density of coral-dwelling gall crabs (Cryptochiridae), obligate symbionts of stony corals. Belt transects (10 × 0.5m2) were laid out at 6, 12 and 18 m depth intervals at 27 localities. Twenty-one known host coral species were surveyed, measured, and the number of crab dwellings was recorded to study the influence of host occurrence, depth distribution, and colony size on the occurrence rates of three Atlantic gall crab species: Opecarcinus hypostegus, Troglocarcinus corallicola and Kroppcarcinus siderastreicola. The overall gall crab prevalence rate was 20.3% across all available host corals at all depths. The agariciid-associated species O. hypostegus was found to mostly inhabit Agaricia lamarcki and its prevalence was highest at deeper depths, following the depth distribution of its host. Kroppcarcinus siderastreicola,associated with Siderastrea and Stephanocoenia, inhabited shallower depths despite higher host availability at deeper depths. The generalist species T. corallicola showed no clear host or depth specialisation. These results show that the primary factors affecting the distribution and occurrence rates over depth intervals differed between each of the three Atlantic cryptochirid species, which in turn influences their vulnerability to reef degradation.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Histopathology of crustose coralline algae a ected by white band and white patch diseases

Crustose coralline algae (CCA) are major benthic calci ers that play crucial roles in marine ecosystems, particularly coral reefs. Over the past two decades, epizootics have been reported for several CCA species on coral reefs worldwide. However, their causes remain often unknown in part because few studies have investigated CCA pathologies at a microscopic scale. We studied the cellular changes associated with two syndromes: Coralline White Band Syndrome (CWBS) and Coralline White Patch Disease (CWPD) from samples collected in Curac ̧ao, southern Caribbean. Healthy-looking tissue of diseased CCA did not di er from healthy tissue of healthy CCA. In diseased tissues of both pathologies, the three characteristic cell layers of CCA revealed cells completely depleted of protoplasmic content, but presenting an intact cell wall. In addition, CWBS showed a transition area between healthy and diseased tissues consisting of cells partially deprived of protoplasmic material, most likely corresponding to the white band characterizing the disease at the macroscopic level. This transition area was absent in CWPD. Regrowth at the lesion boundary were sometimes observed in both syndromes. Tissues of both healthy and diseased CCA were colonised by diverse boring organisms. Fungal infections associated with the diseased cells were not seen. However, other bioeroders were more abundant in diseased vs healthy CCA and in diseased vs healthy-looking tissues of diseased CCA. Although their role in the pathogenesis is unclear, this suggests that disease increases CCA susceptibility to bioerosion. Further investigations using an integrated approach are needed to carry out the complete diagnosis of these diseases. 

 

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?

Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes)

to maintain a healthy population of cells. This study describes the cell kinetics
of choanocytes in the encrusting reef sponge Halisarca caerulea during early regeneration (0–8 h) following experimental wound infliction. Subsequently, we investigated the spatial relationship between regeneration and cell proliferation over a six-day period directly adjacent to the wound, 1 cm, and 3 cm from the wound. Cell proliferation was determined by the incorporation of 5-bromo-20-deoxyuridine (BrdU). We demonstrate that during early regeneration, the growth fraction of the choanocytes (i.e., the percentage of proliferative cells) adjacent to the wound is reduced (7.0 ± 2.5%) compared to steady-state, undamaged tissue (46.6 ± 2.6%), while the length of the cell cycle remained short (5.6 ± 3.4 h). The percentage

of proliferative choanocytes increased over time in all areas and after six days of regeneration choanocyte proliferation rates were comparable to steady-state tissue. Tissue areas farther from the wound had higher rates of choanocyte proliferation than areas closer to the wound, indicating that more resources are demanded from tissue in the immediate vicinity of the wound. There was no diVerence in the number of proliferative mesohyl cells in regenerative sponges compared to steady-state sponges. Our data suggest that the production of collagen-rich wound tissue is a key process in tissue regeneration for H. caerulea, and helps to rapidly occupy the bare substratum exposed by the wound. Regeneration and choanocyte renewal are competing and negatively correlated life-history traits, both essential to the survival of sponges. The eYcient allocation of limited resources to these life-history traits has enabled the ecological success and diversification of sponges. 

 

Date
2015
Data type
Scientific article
Journal
Geographic location
Curacao

Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals

Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge preda- tors. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals.

An unanticipated outcome of the benthic survey component of this study
was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs. 

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Bonaire
Curacao
St. Eustatius