Ocean & Coastal management

Conflicts and solutions related to marine turtle conservation initiatives in the Caribbean basin: Identifying new challenges

Highlights

 

• We identified up to 161 human-derived conflicts which are related to marine turtle conservation initiatives.

• We found that each stakeholder group may have a unique perspective towards these conflicts, complicating enforcement.

• Marine turtle consumption generates conflicts among stakeholders with different socio-cultural values.

• We identified 27 cases that have escalated to a level of physical violence, according to details provided by our respondents.

• We summarised potential solutions for these conflicts, along with possible solution implementations.

 

Abstract

Conflicts among and between local, national, regional and international stakeholders involved in marine turtle conservation are increasing. Often, they arise because of different socio-economic backgrounds of the people or groups involved. Here, we identified and assessed the conservation-based conflicts occurring in 24 of the 39 Caribbean countries, including their frequency, level of severity, number of stakeholders' groups involved, the degree to which they hinder conservation goals, and potential solutions. Using a cross-sectional social survey, we evaluated the presence and details of conservation conflicts provided by 72 respondents. The respondents included conservation-based project leaders, researchers, people involved in policy-based decision-making, conservation volunteers (community-based conservation groups), and species experts with experience working on marine turtle conservation programs in the Caribbean. The respondents identified 136 conflicts, and we grouped them into 16 different categories. The most commonly mentioned causes of conflicts were: 1) the ‘lack of enforcement by local authorities to support conservation-based legislation or programs’ (18%); 2) ‘legal consumption of turtles by one sector of community clashing the conservation aspirations of other sectors of community (14%); and 3) ’variable enforcement of legislation to limit/prohibit use across range states of the species (10%). From our data it is also apparent that illicit activities in the region are also likely to impact the future success of conservation or monitoring based projects and programs. Overall, an exhaustive review was carried out, and the potential solutions were gathered. Due to the level of severity (physical violence) that some conflicts have reached, achieving solutions will be challenging without mediation, mutual cooperation around shared values, and adaptive management arrangements. Achieving this will require combinations of bottom up and top down collaborative governance approaches.

Date
2019
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Construction setback regulations and sea-level rise: Mitigating sea turtle nesting beach loss

Global sea-level rise of up to 0.6 m is predicted in the next 100 years. In areas where coastal structures prevent landward mi- gration of beaches, a major impact of sea-level rise will be a loss of beach habitat, with repercussions for beach-dependent organ- isms such as sea turtles. Setback regulations, which prohibit construction within a set distance from the sea, have the potential to mitigate loss of beach area by providing a buffer zone which allows for the natural movement of beaches in response to perturbation. The potential impact of a rise in sea level on 11 important sea turtle nesting beaches in Barbados under a range of setback regu- lations was determined. Three sea-level rise scenarios were modelled under five different setback regulations (10, 30, 50, 70 and 90 m). Beach area was lost from all beaches under all sea-level rise scenarios with a 10 and 30 m setback, from some beaches with a 50 m setback and from one beach with a 70 m setback. No beach area was lost with a 90 m setback distance. Sea turtles nest within a range of beach elevations and there was an overall loss of beach habitat within the preferred nesting elevation range with both a 10 and 30 m setback under all sea-level rise scenarios. Considerable variation in the extent of beach and nesting area loss was observed. The implementation and enforcement of adequate setback regulations have the potential to maintain the ecological and economic function of beaches in the face of extensive coastal development and sea-level rise. 

Date
2008
Data type
Scientific article
Geographic location
Bonaire

Terrestrial degradation impacts on coral reef health: Evidence from the Caribbean

Coral reefs are in decline worldwide. While coral reef managers are limited in their ability to tackle global challenges, such as ocean warming, managing local threats can increase the resilience of coral reefs to these global threats. One such local threat is high sediment inputs to coastal waters due to terrestrial over-grazing. Increases in terrestrial sediment input into coral reefs are associated with increased coral mortality, reduced growth rates, and changes in species composition, as well as alterations to fish communities. We used general linear models to investigate the link between vegetation ground cover and tree biomass index, within a dry-forest ecosystem, to coral cover, fish communities and visibility in the case study site of Bonaire, Caribbean Netherlands. We found a positive relationship between ground cover and coral cover below 10 m depth, and a negative relationship between tree biomass index and coral cover below 10 m. Greater ground cover is associated to sediment anchored through root systems, and higher surface complexity, slowing water flow, which would otherwise transport sediment. The negative relationship between tree biomass index and coral cover is unexpected, and may be a result of the deep roots associated with dry-forest trees, due to limited availability of water, which therefore do not anchor surface sediment, or contribute to surface complexity. Our analysis provides evidence that coral reef managers could improve reef health through engaging in terrestrial ecosystem protection, for example by taking steps to reduce grazing pressures, or in restoring degraded forest ecosystems.

Date
2017
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire