Nature

Patterns of host-parasite associations between marine meiofaunal flatworms (Platyhelminthes) and rhytidocystids (Apicomplexa)

Microturbellarians are abundant and ubiquitous members of marine meiofaunal communities around the world. Because of their small body size, these microscopic animals are rarely considered as hosts for parasitic organisms. Indeed, many protists, both free-living and parasitic ones, equal or surpass meiofaunal animals in size. Despite several anecdotal records of “gregarines”, “sporozoans”, and “apicomplexans” parasitizing microturbellarians in the literature—some of them dating back to the nineteenth century—these single-celled parasites have never been identified and characterized. More recently, the sequencing of eukaryotic microbiomes in microscopic invertebrates have revealed a hidden diversity of protist parasites infecting microturbellarians and other meiofaunal animals. Here we show that apicomplexans isolated from twelve taxonomically diverse rhabdocoel taxa and one species of proseriate collected in four geographically distinct areas around the Pacific Ocean (Okinawa, Hokkaido, and British Columbia) and the Caribbean Sea (Curaçao) all belong to the apicomplexan genus Rhytidocystis. Based on comprehensive molecular phylogenies of Rhabdocoela and Proseriata inferred from both 18S and 28S rDNA sequences, as well as a molecular phylogeny of Marosporida inferred from 18S rDNA sequences, we determine the phylogenetic positions of the microturbellarian hosts and their parasites. Multiple lines of evidence, including morphological and molecular data, show that at least nine new species of Rhytidocystis infect the microturbellarian hosts collected in this study, more than doubling the number of previously recognized species of Rhytidocystis, all of which infect polychaete hosts. A cophylogenetic analysis examining patterns of phylosymbiosis between hosts and parasites suggests a complex picture of overall incongruence between host and parasite phylogenies, and varying degrees of geographic signals and taxon specificity.

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes

Apicomplexa is a group of obligate intracellular parasites that includes the causative agents of human diseases such as malaria and toxoplasmosis. Apicomplexans evolved from free-living phototrophic ancestors, but how this transition to parasitism occurred remains unknown. One potential clue lies in coral reefs, of which environmental DNA surveys have uncovered several lineages of uncharacterized basally branching apicomplexans. Reef-building corals have a well-studied symbiotic relationship with photosynthetic Symbiodiniaceae dinoflagellates (for example, Symbiodinium3), but the identification of other key microbial symbionts of corals has proven to be challenging. Here we use community surveys, genomics and microscopy analyses to identify an apicomplexan lineage—which we informally name ‘corallicolids’—that was found at a high prevalence (over 80% of samples, 70% of genera) across all major groups of corals. Corallicolids were the second most abundant coral-associated microeukaryotes after the Symbiodiniaceae, and are therefore core members of the coral microbiome. In situ fluorescence and electron microscopy confirmed that corallicolids live intracellularly within the tissues of the coral gastric cavity, and that they possess apicomplexan ultrastructural features. We sequenced the genome of the corallicolid plastid, which lacked all genes for photosystem proteins; this indicates that corallicolids probably contain a non-photosynthetic plastid (an apicoplast). However, the corallicolid plastid differs from all other known apicoplasts because it retains the four ancestral genes that are involved in chlorophyll biosynthesis. Corallicolids thus share characteristics with both their parasitic and their free-living relatives, which suggests that they are evolutionary intermediates and implies the existence of a unique biochemistry during the transition from phototrophy to parasitism.

Date
2019
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes

Apicomplexa is a group of obligate intracellular parasites that includes the causative agents of human diseases such as malaria and toxoplasmosis. Apicomplexans evolved from free-living phototrophic ancestors, but how this transition to parasitism occurred remains unknown. One potential clue lies in coral reefs, of which environmental DNA surveys have uncovered several lineages of uncharacterized basally branching apicomplexans1,2. Reef-building corals have a well-studied symbiotic relationship with photosynthetic Symbiodiniaceae dinoflagellates (for example, Symbiodinium3), but the identification of other key microbial symbionts of corals has proven to be challenging4,5. Here we use community surveys, genomics and microscopy analyses to identify an apicomplexan lineage—which we informally name ‘corallicolids’—that was found at a high prevalence (over 80% of samples, 70% of genera) across all major groups of corals. Corallicolids were the second most abundant coral-associated microeukaryotes after the Symbiodiniaceae, and are therefore core members of the coral microbiome. In situ fluorescence and electron microscopy confirmed that corallicolids live intracellularly within the tissues of the coral gastric cavity, and that they possess apicomplexan ultrastructural features. We sequenced the genome of the corallicolid plastid, which lacked all genes for photosystem proteins; this indicates that corallicolids probably contain a non-photosynthetic plastid (an apicoplast6). However, the corallicolid plastid differs from all other known apicoplasts because it retains the four ancestral genes that are involved in chlorophyll biosynthesis. Corallicolids thus share characteristics with both their parasitic and their free-living relatives, which suggests that they are evolutionary intermediates and implies the existence of a unique biochemistry during the transition from phototrophy to parasitism.

Date
2019
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Loss of coral reef growth capacity to track future increases in sea level

Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.

Date
2018
Data type
Scientific article
Theme
Research and monitoring
Journal
Author

Lytic to temperate switching of viral communities

Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus 'more microbes, fewer viruses'.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal