Molecular Biology

Relationships between phenotypic plasticity and epigenetic variation in two Caribbean Acropora corals

Full text available here: https://pubmed.ncbi.nlm.nih.gov/37454286/

 

Abstract

The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Seascape continuity plays an important role in determining patterns of spatial genetic structure in a coral reef fish

Detecting patterns of spatial genetic structure (SGS) can help identify intrinsic and extrinsic barriers to gene flow within metapopulations. For marine organisms such as coral reef fishes, identifying these barriers is critical to predicting evolutionary dynam- ics and demarcating evolutionarily significant units for conservation. In this study, we adopted an alternative hypothesis-testing framework to identify the patterns and pre- dictors of SGS in the Caribbean reef fish Elacatinus lori. First, genetic structure was estimated using nuclear microsatellites and mitochondrial cytochrome b sequences. Next, clustering and network analyses were applied to visualize patterns of SGS. Finally, logistic regressions and linear mixed models were used to identify the predic- tors of SGS. Both sets of markers revealed low global structure: mitochondrial ΦST = 0.12, microsatellite FST = 0.0056. However, there was high variability among pairwise estimates, ranging from no differentiation between sites on contiguous reef (ΦST = 0) to strong differentiation between sites separated by ocean expanses ≥ 20 km (maximum ΦST = 0.65). Genetic clustering and statistical analyses provided additional support for the hypothesis that seascape discontinuity, represented by oceanic breaks between patches of reef habitat, is a key predictor of SGS in E. lori. Notably, the esti- mated patterns and predictors of SGS were consistent between both sets of markers. Combined with previous studies of dispersal in E. lori, these results suggest that the interaction between seascape continuity and the dispersal kernel plays an important role in determining genetic connectivity within metapopulations. 

Date
2014
Data type
Scientific article
Theme
Research and monitoring