Journal of Biogeography

Hierarchical spatial patterns in Caribbean reef benthic assemblages

Aim

Coral assemblages on Caribbean reefs have largely been considered to be biogeographically homogeneous at a regional scale. We reassess this in three taxa (corals, sponges and octocorals) using three community attributes with increasing levels of information (species richness, composition and relative abundance) across hierarchical spatial scales, and identify the key environmental drivers associated with this variation.

Location

Caribbean Basin.

Methods

We assessed reefs along 546 transects positioned within the same forereef habitat (Orbicella reef) in 11 countries, using a consistent methodology and surveyors. Spatial variability in richness, composition and relative abundance was assessed at four hierarchical spatial scales – transects (metres), sites (kilometres), areas (tens of kilometres) and regions (hundreds of kilometres) – using permutational multivariate analysis of variance (PERMANOVA). The relevance of contemporary environmental factors in explaining the observed spatial patterns was also assessed using PERMANOVA.

Results

Consistent with previous studies, species richness of coral assemblages, commonly the focus of biogeographical studies, showed little variance at large spatial scales. In contrast, species composition and relative abundance showed significant variability at regional scales. Coral, sponge and octocoral assemblages each varied independently across spatial scales. Rugosity and wave exposure were key drivers of the composition and relative abundance of coral and octocoral assemblages.

Main conclusions

Caribbean reef assemblages exhibit considerable biogeographical variability at broad spatial scales (hundreds of kilometres) when more responsive community attributes were used. However, the high degree of variability within sites (kilometres) highlights the relevance of local ecological drivers such as rugosity and wave exposure in structuring assemblages. The high levels of within-site variability that is not explained by environmental variables may suggest a previously unrealized contribution of anthropogenic disturbance operating at local scales throughout the region.

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Geographical structure and cryptic lineages within common green iguanas, Iguana iguana

Aim Our aim was to investigate genetic structure in Neotropical populations of common green iguanas (Iguana iguana) and to compare that structure with past geological events and present barriers. Additionally, we compared levels of divergence between lineages within Iguana with those within closely related genera in the subfamily Iguaninae. Location Neotropics. Methods DNA sequence data were collected at four loci for up to 81 individuals from 35 localities in 21 countries. The four loci, one mitochondrial (ND4) and three nuclear (PAC, NT3, c-mos), were chosen for their differences in coalescent and mutation rates. Each locus was analysed separately to generate gene trees, and in combination in a species-level analysis. Results The pairwise divergence between Iguana delicatissima and I. iguana was much greater than that between sister species of Conolophus and Cyclura and non-sister species of Sauromalus, at both mitochondrial (mean 10.5% vs. 1.5–4%, respectively) and nuclear loci (mean 1% vs. 0–0.18%, respectively). Furthermore, divergences within I. iguana were equal to or greater than those for interspecific comparisons within the outgroup genera. Phylogenetic analyses yielded four strongly supported, geographically defined mitochondrial clades (3.8–5% divergence) within I. iguana. Three of the four clades were found using PAC (0.18–1.65% divergence) and two using NT3 (0.6% divergence) alone. The primary divergence, recovered in three polymorphic loci, was between individuals north and south of the Isthmus of Panama. The southern group was differentiated into clades comprising individuals on either side of the northern Andes, using both PAC and ND4. Main conclusions Deep genetic divergences were found within I. iguana that are congruent with past and current geological barriers. These divisions are greater than sister species comparisons in other Iguaninae genera, indicating the possible presence of cryptic species. Geological changes from the midMiocene through the Plio-Pleistocene have shaped the pattern of divergence in I. iguana. The uplift of the northern Andes presented a barrier between South American I. iguana populations by 4 Ma. Populations north of the Isthmus of Panama form a clade that is distinct from those to the south, and may have expanded northwards following the closing of the Isthmus of Panama 2.5 Ma

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao
Saba
St. Eustatius