Global Change Biology

Climate warming and sea turtle sex ratios across the globe

Abstract

Climate warming and the feminization of populations due to temperature-dependent sex determination may threaten sea turtles with extinction. To identify sites of height-ened  risk,  we  examined  sex  ratio  data  and  patterns  of  climate  change  over  multi-ple   decades for   64   nesting sites    spread across     the   globe.    Over    the   last   62 years the mean    change in  air  temperature was   0.85°C per   century (SD = 0.65°C, range = −0.53 to +2.5°C, n= 64    nesting sites).    Temperatures increased at  40   of  the   64   study    sites. Female-skewed hatchling or  juvenile sex   ratios    occurred at  57   of  the   64   sites,    with skews >90% female at 17 sites. We did not uncover a relationship between the ex-tent of warming and sex ratio (r62= −0.03, p= .802, n= 64    nesting sites).    Hence, our results  suggest  that  female-hatchling  sex  ratio  skews  are  not  simply  a  consequence  of recent warming but have likely persisted at some sites for many decades. So other factors  aside  from  recent  warming  must  drive  these  variations  in  sex  ratios  across  nesting sites, such as variations in nesting behaviour (e.g. nest depth), substrate (e.g. sand albedo), shading available and rainfall patterns. While overall across sites recent warming is not linked to hatchling sex ratio, at some sites there is both is a high female skew    and   high    warming, such    as  Raine    Island    (Australia; 99%    female green    turtles; 1.27°C warming per century), nesting beaches in Cyprus (97.1% female green turtles; 1.68°C    warming per   century) and   in  the  Dutch    Caribbean (St  Eustatius; 91.5%    femaleleatherback turtles; 1.15°C warming per century). These may be among the first sites where management intervention is needed to increase male production. Continued monitoring  of  sand  temperatures  and  sex  ratios  are  recommended  to  help  identify  when high incubation temperatures threaten population viability.

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Geographic location
St. Eustatius

Seagrass ecosystem multifunctionality under the rise of a flagship marine megaherbivore

Abstract

Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.

Date
2022
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Reconstructing past thermal conditions in beach microclimates

Abstract

Reconstruction of past conditions provides important information on how ecosystems have been impacted by climate change, but generally for microhabitats worldwide there are no long-term empirical measurements. In these cases, there has been protracted debate about how various large-scale environmental proxies can best be used to reconstruct local temperatures. Here we help resolve this debate by examining how well environmental proxies hindcast sand temperatures at nest depths for five sea turtle nesting sites across the world. We link instrumental air temperature and sea surface temperature records with empirical sand temperature observations in the Atlantic (Ascension Island and Cape Verde), the Indian Ocean (Chagos Archipelago), the Caribbean (St Eustatius) and the Pacific (French Polynesia). We found strong correlations between sea surface temperatures, air temperatures and sand temperatures at all our study sites. Furthermore, Granger causality testing shows variations in sea surface temperature and air temperature precede variations in sand temperatures. We found that different proxies (air or sea temperature or a combination of both) predicted mean monthly sand temperatures within <0.5°C of empirical observations. Reconstructions of sand temperatures over the last 170 years reveal a slight warming of temperatures (maximum 0.5°C per century). An analysis of 36 published datasets revealed that the gradient of the relationship between sand temperature and air temperature is relatively constant, suggesting long-term changes in sand temperature could be extended around the world to include nesting sites where there are no empirical measurements of sand temperature. Our approaches are likely to have utility for a range of microhabitats where there is an interest in long-term changes in temperature.

 

Find full text here.

Date
2021
Data type
Scientific article
Theme
Research and monitoring
Geographic location
St. Eustatius

Disentangling the effects of plant species invasion and urban development on arthropod community composition

Abstract
Urban development and species invasion are two major global threats to biodiversity. These threats often co-occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non-invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land-use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community-weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change.

Keywords: Anthropocene, Antigonon leptopus, coralita, exotic species, feeding guilds, functional traits, land use change, multistressor effects

 

Referenced in BioNews 35 article "Drastic effects of coralita on the biodiversity of insects and spiders"

Date
2020
Data type
Scientific article
Theme
Education and outreach
Research and monitoring
Document
Geographic location
St. Eustatius

Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients

The capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along-coast assessments of framework production rates and accretion potential do not presently exist. Here we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant maximum accretion potential (RAPmax) of the shallow reef zone of leeward Bonaire – between 5 to 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived RAPmax rates varied3 considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (> 10 kg CaCO3 m-2 year-1 35 ), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (< 2 kg CaCO3 m-2 year-1 36 ) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budgets states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land-based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low-accretion potential will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea-level rise (SLR), thus posing a threat to reef functioning, biodiversity and trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along-coast) assessments of budget states and accretion potential to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework-building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large-scale submergence of Caribbean coral reefs and will constrain the social and economic implications associated with the loss of reef goods and services.
Read more at https://ore.exeter.ac.uk/repository/handle/10871/38706#2F5gySpesqKcswbw.99

Date
2019
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Human land use promotes the abundance and diversity of exotic species on caribbean islands

Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human‐impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two PCA ordination axes related to habitat structure (i.e. forest or non‐forest) and human impact level (i.e. addition of man‐made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in non‐forested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in non‐forested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and non‐forested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species.

 

Date
2018
Data type
Scientific article
Theme
Research and monitoring
Geographic location
St. Eustatius
St. Maarten

Climate change and temperature-linked hatchling mortality at a globally important sea turtle nesting site

The study of temperature-dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery—the Cape Verde Islands—we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long-term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature-dependent sex determination to a focus on temperature-linked hatchling mortalities.

Date
2017
Data type
Scientific article
Theme
Research and monitoring

Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.

Date
2017
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth

Abstract

Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non-framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m−2 yr−1. However, non-framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non-framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean-wide dominance of non-framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non-framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

How much time can herbivore protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching?

Abstract:

Coral reefs have been more severely impacted by recent climate instability than any other ecosystem on Earth. Corals tolerate a narrow range of physical environmental stress, and increases in sea temperature of just 1 1C over several weeks can result in mass coral mortality, often exceeding 95% of individuals over hundreds of square kilometres. Even conservative climate models predict that mass coral bleaching events could occur annually by 2050. Unfortunately, managers of coral-reef resources have few options available to meet this challenge. Here, we investigate the role that fisheries conservation tools, including the designation of marine reserves, can play in altering future trajectories of Caribbean coral reefs. We use an individual-based model of the ecological dynamics to test the influence of spatially realistic regimes of disturbance on coral populations. Two major sources of disturbance, hurricanes and coral bleaching, are simulated in contrasting regions of the Caribbean: Belize, Bonaire, and the Bahamas. Simulations are extended to 2099 using the HadGEM1 climate model. We find that coral populations can maintain themselves under all levels of hurricane disturbance providing that grazing levels are high. Regional differences in hurricane frequency are found to cause strikingly different spatial patterns of reef health with greater patchiness occurring in Belize, which has less frequent disturbance, than the Bahamas. The addition of coral bleaching led to a much more homogenous reef state over the seascape. Moreover, in the presence of bleaching, all reefs exhibited a decline in health over time, though with substantial variation among regions. Although the protection of herbivores does not prevent reef degradation it does delay rates of coral loss even under the most severe thermal and hurricane regimes. Thus, we can estimate the degree to which local conservation can help buy time for reefs with values ranging between 18 years in the Bahamas and over 50 years in Bonaire, compared with heavily fished systems. Ultimately, we demonstrate that local conservation measures can benefit reef ecosystem services but that their impact will vary spatially and temporally. Recognizing where such management interventions will either help or fail is an important step towards both achieving sustainable use of coral-reef resources and maximizing resource management investments. 

Date
2011
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire