Ecology

Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species.

When juveniles must tolerate harsh environments early in life, the disproportionate success of certain phenotypes across multiple early life stages will dramatically influence adult community composition and dynamics. In many species, large offspring have a higher tolerance for stressful environments than do smaller conspecifics (parental effects). However, we have a poor understanding of whether the benefits of increased parental investment carry over after juveniles escape harsh environments or progress to later life stages (latent effects). To investigate whether parental effects and latent effects interactively influence offspring success, we determined the degree to which latent effects of harsh abiotic conditions are mediated by offspring size in two stony coral species. Larvae of both species were sorted by size class and exposed to relatively high-temperature or low-salinity conditions. Survivorship was quantified for six days in these stressful environments, after which surviving larvae were placed in ambient conditions and evaluated for their ability to settle and metamorphose. We subsequently assessed long-term post-settlement survival of one species in its natural environment. Following existing theory, we expected that, within and between species, larger offspring would have a higher tolerance for harsh environmental conditions than smaller offspring. We found that large size did enhance offspring performance in each species. However, large offspring size within a species did not reduce the proportional, negative latent effects of harsh larval environments. Furthermore, the coral species that produces larger offspring was more, not less, prone to negative latent effects. We conclude that, within species, large offspring size does not increase resistance to latent effects. Comparing between species, we conclude that larger offspring size does not inherently confer greater robustness, and we instead propose that other life history characteristics such as larval duration better predict the tolerance of offspring to harsh and variable abiotic conditions. Additionally, when considering how stressful environments influence offspring performance, studies that only evaluate direct effects may miss crucial downstream (latent) effects on juveniles that have significant consequences for long-term population dynamics.

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal

Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish

Abstract:

Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived differently by animals belonging to different life stages. In this study, we used a dual approach to understand how stage-structured habitat use and dispersal ability of adults shape the population of a marine fish species. Our study area and focal species provided us with the unique opportunity to study a closed island population. A spatial simulation model was used to estimate dispersal distances along a coral reef that surrounds the island, while contributions of different nursery bays were determined based on otolith stable isotope signatures of adult reef fish. The model showed that adult dispersal away from reef areas near nursery bays is limited. The results further show that different bays contributed unequally to the adult population on the coral reef, with productivity of juveniles in bay nursery habitat determining the degree of mixing among local populations on the reef and with one highly productive area contributing most to the island’s reef fish population. The contribution of the coral reef as a nursery habitat was minimal, even though it had a much larger surface area. These findings indicate that the geographic distribution of nursery areas and their productivity are important drivers for the spatial distribution patterns of adults on coral reefs. We suggest that limited dispersal of adults on reefs can lead to a source–sink structure in the adult stage, where reefs close to nurseries replenish more isolated reef areas. Understanding these spatial population dynamics of the demersal phase of marine animals is of major importance for the design and placement of marine reserves, as nursery areas contribute differently to maintain adult populations.

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation

Management of many species is currently based on an inadequate under- standing of their population dynamics. Lack of age-specific demographic information. particularly for long-lived iteroparous species. has impeded development of useful models. We use a Lefkovitch stage class matrix model. based on a preliminary life table developed by Frazer (1983a), to point to interim management measures and to identify those data most critical to refining our knowledge about the population dynamics of threatened log- gerhead sea turtles (Caretta caretta). Population projections are used to examine the sen- sitivity of Frazer's life table to variations in parameter estimates as well as the likely response of the population to various management alternatives. Current management practices appear to be focused on the least responsive life stage. eggs on nesting-beaches. Alternative protection efforts for juvenile loggerheads. such as using turtle excluder devices (TEDs). may be far more effective. 

Date
1987
Data type
Scientific article
Theme
Research and monitoring
Journal