A phylogenomic approach to resolving interrelationships of polyclad flatworms, with implications for life-history evolution

Platyhelminthes (flatworms) are a diverse invertebrate phylum useful for exploring life-history evolution. Within Platyhelminthes, only two clades develop through a larval stage: free-living polyclads and parasitic neodermatans. Neodermatan larvae are considered evolutionarily derived, whereas polyclad larvae are hypothesized to be ancestral due to ciliary band similarities among polyclad and other spiralian larvae. However, larval evolution has been challenging to investigate within polyclads due to low support for deeper phylogenetic relationships. To investigate polyclad life-history evolution, we generated transcriptomic data for 21 species of polyclads to build a well-supported phylogeny for the group. The resulting tree provides strong support for deeper nodes, and we recover a new monophyletic clade of early branching cotyleans. We then used ancestral state reconstructions to investigate ancestral modes of development within Polycladida and more broadly within flatworms. In polyclads, we were unable to reconstruct the ancestral state of deeper nodes with significant support because early branching clades show diverse modes of development. This suggests a complex history of larval evolution in polyclads that likely includes multiple losses and/or multiple gains. However, our ancestral state reconstruction across a previously published platyhelminth phylogeny supports a direct developing prorhynchid/polyclad ancestor, which suggests that a larval stage in the life cycle evolved along the polyclad stem lineage or within polyclads.

Back to search results