A landscape ecological vegetation map of Saba (Lesser Antilles)

A semi-detailed landscape-based vegetation map (scale: 1: 37,500) is presented for the 13 km2 Lesser Antillean steep volcanic island of Saba, Netherlands Caribbean. The map is based on a total of 49 vegetation plots that were sampled in 1999 using a stratified random sampling design and analysed using TWINSPAN cluster analysis. Three hundred and fourteen (314) plant species, representing 56% of the total known flora (565 species), were recorded in the sample plots. The principal lower sections of the island possess a tropical savannah climate whereas the upper slopes reaching a maximum altitude of 870 m can best be characterized as a tropical rainforest climate.
A total of two main and nine different sub-landscape types were distinguished based on geology, geomorphology and nine distinguished vegetation types. In Saba, sharp contrasts in soil, geomorphology and climatic factors are found on a small spatial scale and this meant that compared to the other islands of the Dutch Caribbean there is little mixing and merging of vegetation types at the landscape vegetation level. Consequently, vegetation type translates relatively directly into landscape vegetation units. Aside from important contrasts in vegetation that correspond to what is known about differences in soil and climate, our study also shows that large vegetation changes have taken place on the island since the survey by STOFFERS, five decades earlier. These largely appear to be due to three major forces: a) hurricane impacts; b) natural succession made possible due to diminished agricultural activity and; c) invasive plants and plant pest species.
The most recent hurricane, hurricane Georges, which struck the island one year before this study, clearly caused much damage to the vegetation, especially high on Mount Scenery. As a consequence, the elfin woodland vegetation has virtually disappeared, while remnant sections have been radically altered. Based on studies elsewhere in the region, the elfin woodland can be expected to take very long (if at all) to gradually recover. The impact of various hurricanes in the last 60 years has clearly caused major disturbance of the vegetation throwing it back into earlier stages of succession. The development of the “Tree fern brake” into “Pioneer forest” vegetation must be seen as a positive change where a secondary community had entered a higher stage in the sequence of succession. The virtual disappearance of the formerly prominent secondary shrub communities like Miconia thickets, Piper dilatatum thickets and Leucaena thickets can also be seen as likely evidence of natural successional forces thanks to diminished agriculture and woodcutting. Invasive species was the third major force of change that clearly appears to have been active on Saba in recent decades. The lasting impacts of insect invaders which have decimated formerly prominent Opuntia (cactus) and Tabebuia (tree) populations testify to the impact of invasive species as a major driver of recent vegetation changes on Saba.
Our field data show that most wilderness areas of Saba remain strongly affected by roaming grazing goats even though the contribution of goats to the local island economy is negligible. Goat dung or traces of grazing were recorded in or adjacent to 46% of the sample plots. Grazing by exotic mammals reduces the resilience of natural vegetation types and interferes with natural succession. Highest livestock densities and impacts seem to be in the more vulnerable coastal arid zones along the western and southern sections of the island with poor soil conditions and more open and shrubby vegetation. The development of ‘Dry evergreen woodland’ under similar conditions on the more remote, windy and salt spray-affected, but less-grazed, northern sectors of the island, suggest that those disturbed areas of the southern and western coastal zones should have potential for woodland recovery if and when goat grazing is reduced. Therefore, a key priority for terrestrial conservation in Saba should be to reduce feral grazer densities to allow vegetation recovery and reduce vulnerability to erosion. We suggest the use of pilot demonstration projects for grazer exclusion as a useful way to help build stronger arguments and public support for tackling the roaming goat problem in Saba.

Back to search results