Evolutionary ecology of sea turtles

Summary PHD Thesis

The genetic diversity and structure of natural populations is  the product of past and  present  ecological  and  evolutionary  processes,  which  can  be  intrinsic,  such  as  behavioural  or  ecological  factors,  or  extrinsic,  such  as  environmental  variation  and  climate  change.  Molecular  markers  can  be  used  to  study  the  genetic  diversity  and  structure of natural populations to gain a fundamental understanding of the extrinsic  and intrinsic  processes  that  underlie  their  evolutionary  histories.  These insights  are  critical to understanding the ecology and evolution of species, and can play signiticant  roles in aiding conservation and management. 

In the present doctoral thesis, traditional and next‑generation DNA sequencing  approaches  were  employed  to  investigate  the  intrinsic  and  extrinsic  processes  that  shaped  the  genetic  diversity  and  structure  of  the  green  turtle,  Chelonia  mydas,  and  hawksbill  turtle, Eretmochelys imbricata, in  the Atlantic and Southwest  Indian Ocean.  The  thesis  was  divided  into  two  sections:  an  ecological  section  (Chapters  2  and  3)  concerned  with  the  intrinsic  and  extrinsic  processes  affecting  dispersal  and  recruitment  dynamics  in  sea  turtles  in  the  present  and  an  evolutionary  section  (Chapters  4 and  5)  that addressed  questions  regarding  the intluence  of  past  climate  and environmental change on the evolution of sea turtles. 

In  Chapter  2,  the  effect  of  changes  in  population  dynamics  at  rookeries  on  juvenile  recruitment  to  feeding  grounds  was  investigated  by  monitoring  temporal  changes in the genetic composition at a major juvenile green turtle feeding ground in  the southern Caribbean using mitochondrial DNA control region sequences. Temporal  changes  in  the  frequencies  of  mitochondrial  DNA  haplotypes  indicated  recruitment  from  eastern  Caribbean  rookeries  decreased  between  2006  and  2016,  whereas  recruitment  from  northwestern  Caribbean  rookeries  increased  during  this  period.  Changes  in  recruitment  through  time  correlated  with  population  recovery  trends  in  the  Caribbean;  northwestern  Caribbean  rookeries  showed  the  highest  degree  of  recovery, whereas  the lowest  degree  of  recovery was  observed in eastern  Caribbean  rookeries. These tindings suggested that changes in population dynamics at rookeries  can  affect  recruitment  of  juveniles  to  feeding  grounds  and  can  intluence  sea  turtle  meta‑population dynamics. 

In  Chapter  3,  mitochondrial  DNA  control  region  sequences  were  used  to  investigate the intluence of ocean currents on juvenile dispersal in green turtles in the  Southwest  Indian Ocean. Recruitment  from northern Mozambique Channel rookeries  to a juvenile green turtle feeding ground located in the southern Mozambique Channel  Evolutionary Ecology of Sea Turtles 175 was high, while  recruitment  from southern Mozambique Channel  rookeries was low.  The relatively high recruitment  from northern rookeries to a juvenile  feeding ground  located  in  the  southern  Mozambique  Channel  supported  a  scenario  where  juvenile  green  turtle  dispersal  was  mediated  by  southward  tlowing  ocean  currents.  These  tindings  suggested  an important  role  for  ocean  currents in  determining juvenile  sea  turtle  dispersal  patterns,  though  more  long‑term  studies  are  needed  to  further  investigate  the  temporal  stability  of  juvenile  recruitment  patterns  in  the  face  of  the  complex and variable oceanography of the Southwest Indian Ocean. 

In  Chapter  4,  the  intluence  of  past  climate  and  environmental  change  on  the  population structure and phylogeography of green turtles was studied in the Atlantic  and  Southwest  Indian  Ocean.  A  large  number  of  single  nucleotide  polymorphisms  (SNPs)  were  obtained  from  green  turtles  sampled  in  the  East  Caribbean,  the  East  Atlantic  and  the  Southwest  Indian  Ocean  using  double‑digested  restriction  site  associated DNA sequencing. Model‑based clustering supported  the presence of  three  genetic  clusters  and  revealed  signatures  of  admixture  in  the  East  Caribbean  and  Southwest  Indian  Ocean.  The  last  most  recent  common  ancestor  of  Atlantic  and  Southwest  Indian Ocean green  turtles in  the was dated  to  the last interglacial period  (130 – 116 thousand years ago), which was a relatively warm period. The divergence  of  Southwest  Indian  Ocean  and  East  Caribbean  green  turtles  from  the  East  Atlantic  population was associated with the transition from the last interglacial period (130 – 116 thousand years ago) to the last glacial period (116 – 14 thousand years ago). The  tindings  of  Chapter  4  suggested  that  ancestral  Atlantic  and  Southwest  Indian  Ocean  green  turtles  became  isolated  in  three  glacial  refugia  during  the  last  glaciation,  and  subsequently  expanded  and  admixed  in  the  East  Caribbean  and  Southwest  Indian  Ocean after the termination of the last glacial period approximately 14 thousand years  ago. 

In  Chapter  5,  the  impact  of  past  sea  level tluctuations  on  the  evolution  of  sea  turtles was investigated in Caribbean hawksbill  turtles using a moditied approach  to  double‑digested  restriction  site  associated  DNA  sequencing  to  account  for  potential  biases  caused  by  PCR  enrichment.  Past  tluctuations  in  genetic  diversity  were  estimated  from  the  folded  site  frequency  spectrum  and  correlated  with  changes  in  shallow marine habitat area, i.e. habitat with a depth between 0 and 60 meters, during  the last  125  thousand  years.  The tindings  of  Chapter  5  showed  that  shallow marine  habitat  area  was  severely  reduced  throughout  the  last  glacial  period.  Furthermore,  Summary 176 past changes in shallow marine habitat area correlated strongly with past changes in  genetic  diversity.  Genetic  diversity  increased  sharply  after  the  end  of  the  last  glaciation, suggesting Caribbean hawksbill  turtles rapidly expanded as global climate  conditions warmed, continental ice sheets regressed and sea levels rose. The tindings  of Chapter 5 demonstrated past sea level tluctuations had a strong impact on the past  population dynamics of hawksbill  turtles in  the Caribbean, possibly  through reduced  feeding habitat availability during periods with lower sea levels.

Back to search results