Woesik, R. van

How much time can herbivore protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching?

Abstract:

Coral reefs have been more severely impacted by recent climate instability than any other ecosystem on Earth. Corals tolerate a narrow range of physical environmental stress, and increases in sea temperature of just 1 1C over several weeks can result in mass coral mortality, often exceeding 95% of individuals over hundreds of square kilometres. Even conservative climate models predict that mass coral bleaching events could occur annually by 2050. Unfortunately, managers of coral-reef resources have few options available to meet this challenge. Here, we investigate the role that fisheries conservation tools, including the designation of marine reserves, can play in altering future trajectories of Caribbean coral reefs. We use an individual-based model of the ecological dynamics to test the influence of spatially realistic regimes of disturbance on coral populations. Two major sources of disturbance, hurricanes and coral bleaching, are simulated in contrasting regions of the Caribbean: Belize, Bonaire, and the Bahamas. Simulations are extended to 2099 using the HadGEM1 climate model. We find that coral populations can maintain themselves under all levels of hurricane disturbance providing that grazing levels are high. Regional differences in hurricane frequency are found to cause strikingly different spatial patterns of reef health with greater patchiness occurring in Belize, which has less frequent disturbance, than the Bahamas. The addition of coral bleaching led to a much more homogenous reef state over the seascape. Moreover, in the presence of bleaching, all reefs exhibited a decline in health over time, though with substantial variation among regions. Although the protection of herbivores does not prevent reef degradation it does delay rates of coral loss even under the most severe thermal and hurricane regimes. Thus, we can estimate the degree to which local conservation can help buy time for reefs with values ranging between 18 years in the Bahamas and over 50 years in Bonaire, compared with heavily fished systems. Ultimately, we demonstrate that local conservation measures can benefit reef ecosystem services but that their impact will vary spatially and temporally. Recognizing where such management interventions will either help or fail is an important step towards both achieving sustainable use of coral-reef resources and maximizing resource management investments. 

Date
2011
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

The effects of partial mortality on the fecundity of three common Caribbean corals

The recent intensification of human disturbances in the Caribbean has increased the prevalence of partial mortality on coral colonies. Partial mortality can change colony size by directly shrinking colonies or by splitting colonies into fragments. A reduction in colony size can also adversely affect fecundity and fitness as internal resources shift away from reproduction toward colony maintenance. This study aimed to determine whe- ther three Caribbean coral species, Siderastrea siderea, Montastraea faveolata, and Diploria strigosa, along the reef tract in Puerto Morelos, Mexico (20'52'N, 86'51'W), continued to dedicate resources to reproduction when colonies were fragmented to pre-maturation size. Contrary to expectations, eggs were found in colonies that were smaller than the maturation size and had been subjected to partial mortality. The continued dedication of resources toward reproduction, even in the smallest colonies, suggests that resource trade-offs away from reproduction are not as rigid as previously suggested in stressed corals. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal