Smith, J.E.

Can we measure beauty? Computational evaluation of coral reef aesthetics

The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Speci c coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic in uence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and signi cantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but in uenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost e cient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Document
Journal
Geographic location
Curacao

Exploring the occurrence of and explanations for nighttime spikes in dissolved oxygen across coral reef environments

Primary producers release oxygen as the by-product of photosynthetic light reactions during the day. However, a prevalent, globally-occurring nighttime spike in dissolved oxygen in the absence of light challenges the traditional assumption that biological oxygen production is limited to daylight hours, particularly in tropical coral reefs. Here we show: 1) the widespread nature of this phenomenon, 2) its reproducibility across tropical marine ecosystems, 3) the influence of biotic and abiotic factors on this phenomenon across numerous datasets, and 4) the observation of nighttime oxygen spikes in vitro from incubations of coral reef benthic organisms. The data from this study demonstrate that in addition to physical forcing, biological processes are likely responsible for increasing dissolved oxygen at night. Additionally, we demonstrate an association between these nighttime oxygen spikes and measures of both net community calcification and net community production. These results suggest that nighttime oxygen spikes are likely a biological response associated with increased respiration and are most prominent in communities dominated by calcifying organisms.

Date
2017
Data type
Other resources
Theme
Research and monitoring
Geographic location
Curacao

Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects

Abstract:

On coral reefs, herbivorous fishes consume benthic primary producers and regulate competition between fleshy algae and reef-building corals. Many of these species are also important fishery targets, yet little is known about their global status. Using a large-scale synthesis of peer-reviewed and unpub- lished data, we examine variability in abundance and biomass of herbivorous reef fishes and explore evidence for fishing impacts globally and within regions. We show that biomass is more than twice as high in locations not accessible to fisheries relative to fisheries-accessible locations. Although there are large biogeographic differences in total biomass, the effects of fishing are consistent in nearly all regions. We also show that exposure to fishing alters the structure of the herbivore community by disproportionately reducing bio- mass of large-bodied functional groups (scraper/excavators, browsers, grazer/ detritivores), while increasing biomass and abundance of territorial algal- farming damselfishes (Pomacentridae). The browser functional group that consumes macroalgae and can help to prevent coral–macroalgal phase shifts appears to be most susceptible to fishing. This fishing down the herbivore guild probably alters the effectiveness of these fishes in regulating algal abun- dance on reefs. Finally, data from remote and unfished locations provide important baselines for setting management and conservation targets for this important group of fishes. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring

Survival and dispersal of turf algae and macroalgae consumed by herbivorous coral reef fishes

Abstract: 

The mechanisms by which algae disperse across space on coral reefs are poorly known. We inves- tigated the ability of four common Caribbean herbivorous fish species to disperse viable algal fragments through consumption of macroalgae and subsequent defecation. Fragments of all major algal taxa (Phaeophyta, Rhodophyta, and Chlorophyta) were found in 98.7 % of the fecal droppings of all fish species; however, the ability to survive gut passage and reattach to a substrate differed between algal taxa. While survival and reattachment approached zero for Phaeophyta and Chlorophyta, 76.4 % of the fragments belonging to the group Rhodophyta (mostly species in the order Gelidiaceae) survived gut passage, and were able to grow and reattach to the substrate by forming new rhizoids. Our results thus show that Gelidid algal species are dispersed by swimming herbivores. While the relative contribution of this mechanism to overall algal dispersal and recruitment in a wider ecological context remains unknown, our findings illustrate a previously undescribed mechanism of algal dispersal on coral reefs which is analogous to the dispersal of terrestrial plants, plant fragments, and seeds via herbivore ingestion and defecation. 

Date
2012
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao