Robertson, D.R.

A new species of Chromis damselfish from the tropical western Atlantic (Teleostei, Pomacentridae)

Initially described in 1882, Chromis enchrysurus, the Yellowtail Reeffish, was redescribed in 1982 to account for an observed color morph that possesses a white tail instead of a yellow one, but morphological and geographic boundaries between the two color morphs were not well understood. Taking advantage of newly collected material from submersible studies of deep reefs and photographs from rebreather dives, this study sought to determine whether the white-tailed Chromis is actually a color morph of Chromis enchrysurus or a distinct species. Phylogenetic analyses of mitochondrial genes cytochrome b and cytochrome c oxidase subunit I separated Chromis enchrysurus and the white-tailed Chromis into two reciprocally monophyletic clades. A principal component analysis based on 27 morphological characters separated the two groups into clusters that correspond with caudal-fin coloration, which was either known or presumed based on the specimen’s collection site according to biogeographic data on species boundaries in the Greater Caribbean. Genetic, morphological, and biogeographic data all indicate that the white-tailed Chromis is a distinct species, herein described as Chromis vanbebberae sp. nov. The discovery of a new species within a conspicuous group such as damselfishes in a well-studied region of the world highlights the importance of deep-reef exploration in documenting undiscovered biodiversity.

 

Keywords Caribbean, coral reef, mesophotic, phylogenetics, rariphotic, systematics

Date
2020
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao
St. Eustatius

The marine fishes of St Eustatius Island, northeastern Caribbean: an annotated, photographic catalog

Sint Eustatius (Statia) is a 21 km2 island situated in the northeastern Caribbean Sea. The most recent published sources of information on that island’s marine fish fauna is in two non-governmental organization reports from 2015–17 related to the formation of a marine reserve. The species-list in the 2017 report was based on field research in 2013–15 using SCUBA diving surveys, shallow “baited underwater video surveys” (BRUVS), and data from fishery surveys and scientific collections over the preceding century. That checklist comprised 304 species of shallow (mostly) and deep-water fishes. In 2017 the Smithsonian Deep Reef Observation Project surveyed deep-reef fishes at Statia using the crewed submersible Curasub. That effort recorded 120 species, including 59 new occurrences records. In March-May 2020, two experienced citizen scientists completed 62 SCUBA dives there and recorded 244 shallow species, 40 of them new records for Statia. The 2017–2020 research effort increased the number of species known from the island by 33.6% to 406. Here we present an updated catalog of that marine fish fauna, including voucher photographs of 280 species recorded there in 2017 and 2020. The Statia reef-fish fauna likely is incompletely documented as it has few small, shallow, cryptobenthic species, which are a major component of the regional fauna. A lack of targeted sampling is probably the major factor explaining that deficit, although a limited range of benthic marine habitats may also be contributing

Date
2020
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
St. Eustatius

Below the Mesophotic

Mesophotic coral ecosystems, which occur at depths of ~40 to 150 m, have received recent scientific attention as potential refugia for organisms inhabiting deteriorating shallow reefs. These ecosystems merit research in their own right, as they harbor both depth-generalist species and a distinctive reef-fish fauna. Reef ecosystems just below the mesophotic are globally underexplored, and the scant recent literature that mentions them often suggests that mesophotic ecosystems transition directly intothose of the deep sea. Through submersible-based surveys in the Caribbean Sea, we amassed the most extensive database to date on reef-fish diversity between ~40 and 309 m at any single tropical location. Our data reveal a unique reef-fish assemblage living between ~130 and 309 m that, while taxonomically distinct from shallower faunas, shares strong evolutionary affinities with them. Lacking an existing name for this reef-faunal zone immediately below the mesophotic but above the deep aphotic, wepropose “rariphotic.” Together with the “altiphotic,” proposed here for the shallowest reef-faunal zone, and the mesophotic, the rariphotic is part of a depth continuum of discrete faunal zones of tropical reeffishes, and perhaps of reef ecosystems in general, all of which warrant further study in light of globaldeclines of shallow reefs.

Date
2018
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Shorefishes of the Greater Caribbean: online information system

Shorefishes of the Greater Caribbean: online information system. 

A free iPhone/iPad/iPod touch application, provides tools to identify and record information about virtually all species of shallow-living marine shore-fishes from the Greater Caribbean (1,600 species from 169 families). To aid in the identification of those species, the app incorporates over 5,500 images, most of them color photographs of live or freshly collected fish. To collect specimens for this initiative, several field work surveys were conducted since 2005, in the coastal and insular waters of the USA (Florida to Texas), Bahamas, Panamá, Curacao, and Venezuela, some of them specially oriented toward locations that were not previously adequately sampled due to logistical complexities of access. During these surveys particular attention was placed on the collection of cryptic, hence poorly known, species. Additionally, collection records from many online (museums and universities) and individual databases, as well as the information provided by the scientific literature were incorporated into the system to enhance geography coverage for each species. Together those produced a database of almost 800,000 occurrence records that were used to construct the species range-maps. A notebook module allows constructing and storing lists of species, together with data relating to the list itself and each member of a list, to organize those lists in folders, and to export them by email.

Date
2015
Data type
Portal
Theme
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten
Image
Shorefishes of the Greater Caribbean

More new deep-reef basslets (Teleostei, Grammatidae, Lipogramma), with updates on the eco-evolutionary relationships within the genus

Two new Lipogramma basslets are described, L. barrettorum and L. schrieri, captured during submersible diving to 300 m depth off Curaçao, southern Caribbean. Superficially resembling L. robinsi in having 11–12 bars of pigment on the trunk, L. barrettorum is distinct from L. robinsi in having a stripe of blue-white pigment along the dorsal midline of the head (vs. a cap of yellow pigment), in patterns of pigment on the median fins, and in having 8–10 gill rakers on the lower limb of the first arch (vs. 11–12). Lipogramma schrieri is distinct from all congeners in having seven or eight dark bars of pigment on the trunk and broad, irregular, whitish blue markings on the dorsal portion of the head. The new species are genetically distinct from one another and from seven other Lipogramma species for which genetic data are available. A phylogenetic hypothesis derived from mitochondrial and nuclear genes suggests that the new species belong to a clade that also comprises L. evides and L. haberi. Collectively those four species are the deepest-living members of the genus, occurring at depths predominantly below 140 m. This study thus provides further evidence of eco-evolutionary correlations between depth and phylogeny in Caribbean reef fishes. Tropical deep reefs are globally underexplored ecosystems, and further investigation of Caribbean deep reefs undoubtedly will provide samples of species for which no genetic material currently exists and reveal more cryptic species diversity in the genus.

Date
2018
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean

We describe a new species of goby, Varicus lacerta sp. n., which was collected from a mesophotic reef at Curacao, southern Caribbean. The new species is the tenth species of Varicus, all of which occur below traditional SCUBA depths in the wider Caribbean area. Its placement in the genus Varicus is supported by a molecular phylogenetic analysis of three nuclear genes and the mitochondrial gene cytochrome b. In addition, the new species has one anal-fin pterygiophore inserted anterior to the first haemal spine, which distinguishes Varicus species from most species in the closely related and morphologically similar genus Psilotris. Varicus lacerta sp. n. is distinguished from all other named species of Varicus by the absence of scales, having highly branched, feather-like pelvic-fin rays, and in its live coloration. We provide the cytochrome c oxidase I DNA barcode of the holotype and compare color patterns of all species of Varicusand Psilotris for which color photographs or illustrations are available. This study is one of several recent studies demonstrating the utility of manned submersibles in exploring the diversity of poorly studied but species-rich deep-reef habitats.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Molecular phylogeny, analysis of character evolution, and submersible collections enable a new classification of a diverse group of gobies (Teleostei: Gobiidae: Nes subgroup), including nine new species and four new genera

The Nes subgroup of the Gobiosomatini (Teleostei: Gobiiformes: Gobiidae) is an ecologically diverse clade of fishes endemic to the tropical western Atlantic and eastern Pacific oceans. It has been suggested that morphological characters in gobies tend to evolve via reduction and loss associated with miniaturization, and this, coupled with the parallel evolution of adaptations to similar microhabitats, may lead to homoplasy and ultimately obscure our ability to discern phylogenetic relationships using morphological characters alone. This may be particularly true for the Nes subgroup of gobies, where several genera that are diagnosed by ‘reductive characters’ have been shown to be polyphyletic. Here we present the most comprehensive phylogeny to date of the Nes subgroup using mitochondrial and nuclear sequence data. We then evaluate the congruence between the distribution of morphological characters and our molecular tree using maximum-likelihood ancestral state reconstruction, and test for phylogenetic signal in characters using Pagel’s k tree transformations (Nature, 401, 1999 and 877). Our results indicate that all of the characters previously used to diagnose genera of the Nes subgroup display some degree of homoplasy with respect to our molecular tree; however, many characters display considerable phylogenetic signal and thus may be useful in diagnosing genera when used in combination with other characters. We present a new classification for the group in which all genera are monophyletic and in most cases diagnosed by combinations of morphological characters. The new classification includes four new genera and nine new species described here, many of which were collected from rarely sampled deep Caribbean reefs using manned submersibles. The group now contains 38 species in the genera Carrigobius gen. nov., Chriolepis, Eleotrica, Gobulus, Gymneleotris, Nes, Paedovaricus gen. nov., Pinnichthys gen. nov., Psilotris, and Varicus. Lastly, we provide a key to all named species of the Nes subgroup along with photographs and illustrations to aid in identification. 

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

A new deep-reef scorpionfish (Teleostei, Scorpaenidae, Scorpaenodes) from the southern Caribbean with comments on depth distributions and relationships of western Atlantic members of the genus

A new species of scorpionfish, Scorpaenodes barrybrowni Pitassy & Baldwin, sp. n. which is described, was collected during submersible diving in the southern Caribbean as part of the Smithsonian’s Deep Reef Observation Project (DROP). It differs from the other two western Atlantic species of the genus, Scorpaenodes caribbaeus and Scorpaenodes tredecimspinosus, in various features, including its color pattern, having an incomplete lateral line comprising 8–10 pored scales, tending to be more elongate, usually having the 11th–12th pectoral-fin rays elongate, and by 20–23% divergence in the cytochrome c oxidase I (COI) DNA barcode sequences. It further differs from one or the other of those species in head spination and in numbers of soft dorsal-fin rays, pectoral-fin rays, and precaudal + caudal vertebrae. Inhabiting depths of 95–160 m, the new species is the deepest western Atlantic member of the genus (Scorpaenodes caribbaeus occurs at depths < 35 m and Scorpaenodes tredecimspinosus from 7 to 82 m). DNA barcode data do not rigorously resolve relationships among the ten species of the genus for which those data are available.

 

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Defining and Dividing the Greater Caribbean: Insights from the Biogeography of Shorefishes

The Greater Caribbean biogeographic region is the high-diversity heart of the Tropical West Atlantic, one of four global centers of tropical marine biodiversity. The traditional view of the Greater Caribbean is that it is limited to the Caribbean, West Indies, southwest Gulf of Mexico and tip of Florida, and that, due to its faunal homogeneity, lacks major provincial subdivisions. In this scenario the northern 2/3 of the Gulf of Mexico and southeastern USA represent a separate temperate, “Carolinian” biogeographic region. We completed a comprehensive re-assessment of the biogeography of the Greater Caribbean by comparing the distributions of 1,559 shorefish species within 45 sections of shelf waters of the Greater Caribbean and adjacent areas. This analysis shows that that the Greater Caribbean occupies a much larger area than usually thought, extending south to at least Guyana, and north to encompass the entire Carolinian area. Rather than being homogenous, the Greater Caribbean is divided into three major provinces, each with a distinctive, primarily tropical fauna: (1) a central, tropical province comprising the West Indies, Bermuda and Central America; (2) a southern, upwelling-affected province spanning the entire continental shelf of northern South America; and (iii) a northern, subtropical province that includes all of the Gulf of Mexico, Florida and southeastern USA. This three-province pattern holds for both reef- and soft bottom fishes, indicating a general response by demersal fishes to major variation in provincial shelf environments. Such environmental differences include latitudinal variation in sea temperature, availability of major habitats (coral reefs, soft bottom shorelines, and mangroves), and nutrient additions from upwelling areas and large rivers. The three-province arrangement of the Greater Caribbean broadly resembles and has a similar environmental basis to the provincial arrangement of its sister biogeographic region, the Tropical Eastern Pacific.

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

A new Liopropoma sea bass (Serranidae, Epinephelinae, Liopropomini) from deep reefs off Curaçao, southern Caribbean, with comments on depth distributions of western Atlantic liopropomins

Abstract

Collecting reef-fish specimens using a manned submersible diving to 300 m off Curaçao, southern Caribbean, is resulting in the discovery of numerous new fish species. The new Liopropoma sea bass described here differs from other western Atlantic members of the genus in having VIII, 13 dorsal-fin rays; a moderately indented dorsal-fin margin; a yellow-orange stripe along the entire upper lip; a series of approximately 13 white, chevron-shaped markings on the ventral portion of the trunk; and a reddish-black blotch on the tip of the lower caudal-fin lobe. The new species, with predominantly yellow body and fins, closely resembles the other two “golden basses” found together with it at Curaçao: L. aberransand L. olneyi. It also shares morphological features with the other western Atlantic liopropomin genus, Bathyanthias. Preliminary phylogenetic data suggest that western Atlantic liopropomins, including Bathyanthias, are monophyletic with respect to Indo-Pacific Liopropoma, and that Bathyanthias is nested within Liopropoma, indicating a need for further study of the generic limits of Liopropoma. The phylogenetic data also suggest that western Atlantic liopropomins comprise three monophyletic clades that have overlapping depth distributions but different depth maxima (3–135 m, 30–150 m, 133–411 m). The new species has the deepest depth range (182–241 m) of any known western Atlantic Liopropomaspecies. Both allopatric and depth-mediated ecological speciation may have contributed to the evolution of western Atlantic Liopropomini.

 

 

 

Date
2014
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao