Rempel, H.

Coral Bleaching in the Bonaire National Marine Park 2016-2020

Abstract

Mass coral bleaching is becoming more frequent and widespread and poses a major threat to coral reefs worldwide. Mass coral bleaching is a response to thermal stress triggered by high Sea Surface Temperatures (SSTs) or ultraviolet radiation attributed to changing regional and global climate patterns. Since 2016, STINAPA Bonaire has surveyed the severity of coral bleaching in the Bonaire National Marine Park at 10 sites on the leeward coast. Each year, corals exhibited signs of thermal stress including paling, partial bleaching, and fully bleaching, but no mortality. Since 2016, the year with the lowest percentage of corals affected was 2018 (9%) and the year with the highest percent of corals affected was 2020 (61%). Corals deeper in the water column were more susceptible to thermal stress in all years, but susceptibility trends by site were not consistent throughout the study. While addressing the global-scale causes of coral bleaching is daunting, STINAPA Bonaire monitors the severity of coral bleaching and helps develop local management strategies that may improve the resistance and resilience of coral reefs in the Bonaire National Marine Park to climate change.

Key words: Bonaire National Marine Park, coral bleaching, reef resilience, El Niño Southern Oscillation, Caribbean

Date
2021
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire

Impacts of parrotfish predation on a major reef-building coral: quantifying healing rates and thresholds of coral recovery

 Parrotfishes are important Caribbean herbivores that are believed to indirectly benefit corals by grazing algae; yet, some species also feed on live coral, which may have direct negative impacts on coral growth and survivorship. Caribbean parrotfishes prey upon multiple coral species but have particularly high rates of predation on Orbicella annularis , a major framework building coral and an endangered species. While some researchers have suggested that parrotfishes may have significant long-term impacts on heavily targeted species such as O. annularis , the patterns of coral recovery from parrotfish predation scars remain poorly understood. To address this knowledge gap, we tracked the fate of parrotfish bite scars on O. annularis  colonies across two Caribbean islands for up to 2 months. We evaluated differences in coral healing between islands in response to a number of variables including the initial scar surface area, scar abundance per coral colony, colony surface area, and water depth. We used these data to develop a predictive model of O. annularis  tissue loss from recent parrotfish bite scars. We then applied this model to surveys of the distribution of bite scars at a point in time to estimate long-term tissue loss of O. annularis  colonies from a standing stock of bite scars. Our findings suggest that the initial scar surface area is one of the most important predictors of coral tissue loss. The data also indicate that there are thresholds in patterns of coral tissue regeneration:we observed that small scars (B  1.25 cm2 ) often fully heal, while larger scars (C  8.2 cm2 ) had minimal tissue regeneration. The vast majority of observed scars (*  87%) were 1.25 cm2  or less, and our model predicted that O. annularis  colonies would regenerate nearly all the corresponding scar area. In contrast, while scars greater than or equal to 8.2 cm2  were infrequent (*  6% of all observed scars), our model predicted that these larger scars would account for over 96% of the total tissue loss for grazed colonies. Overall, our results suggest that the immediate negative impacts of parrotfish predation on coral tissue loss appear to be driven primarily by a few exceptionally large bite scars. While further work is needed to understand the long-term impacts of corallivory and quantify the net impacts of parrotfish herbivory and corallivory on Caribbean coral reefs, this study is an important step in addressing factors that impact the recovery of a heavily targeted and ecologically  important Caribbean coral from parrotfish predation.

Date
2020
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Bonaire

Control of algae on coral reefs by large herbivorous fishes

Coral reefs harbor a vast amount of global diversity relative to their size, and are an important economic resource to coastal communities. Over the past few decades, many coral reefs have undergone a phase shift from a substrate dominated by coral to one dominated by algae, largely due to anthropogenic stress. Herbivorous fishes play a major role in topdown control of algal growth and composition; however, depletion of biomass due to overfishing and habitat degradation has threatened the top-down control of fish herbivory on algal composition. This experiment compared endolithic turf algae (TA) composition on coralline rubble under complete fish exclusion, large fish exclusion (>13 cm), and no fish exclusion treatments. There was a significant increase in growth, richness, and percent cover of TA in response to reduced herbivory. The greatest compositional shift occurred in complete fish exclusion treatments. Crustose coralline algae (CCA), important in coral recruitment and growth, significantly increased in cover under every treatment except complete fish exclusion. This illustrates the importance of large-bodied herbivorous fish in controlling TA growth and maintaining bare substrate to facilitate coral recruitment and growth. This study provided insight into how Caribbean reefs go through initial stages of a phase shift from a coral dominated benthos to one dominated by taller, denser algae. Finally, it illustrates how Bonaire’s reef, currently regarded as one of the most intact in the Caribbean, could change in composition if large herbivorous fish are removed from the ecosystem.

This student research was retrieved from Physis: Journal of Marine Science XVI (Fall 2014)19: 55-65 from CIEE Bonaire.

Date
2014
Data type
Other resources
Theme
Research and monitoring
Geographic location
Bonaire
Author