Price, N.N.

Geographic variation in long-term trajectories of change in coral recruitment: a global-to-local perspective

Compiled abundances of juvenile corals revealed no change over time in the Pacific, but a decline in the Caribbean. Using these analyses as a rationale, we explored recruitment and post-settlement success in determining coral cover using studies in the Caribbean (St John, Bonaire) and Pacific (Moorea, Okinawa). Juvenile corals, coral recruits, and coral cover have been censused in these locations for years, and the ratio of juvenile (J) to recruiting (R) corals was used to measure post-settlement success. In St John and Bonaire, coral cover was stable but different between studies, with the ratio of the density of juveniles to density of recruits (J : R) ~0.10; in Moorea, declines in coral cover were followed by recovery that was related to the density of juvenile corals 3 years before, with J : R ~0.40; and in Okinawa, a decline in coral cover in 1998 was followed by a slow recovery with J/R ~0.01. Coral cover was associated positively with juvenile corals in St John, and in Okinawa, the density of juvenile corals was associated positively with recruits the year before. J : R varied among studies, and standardised densities of juvenile corals declined in the Caribbean, but increased in the Pacific. These results suggest that differences in the post-settlement success may drive variation in coral community structure.

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Exploring the occurrence of and explanations for nighttime spikes in dissolved oxygen across coral reef environments

Primary producers release oxygen as the by-product of photosynthetic light reactions during the day. However, a prevalent, globally-occurring nighttime spike in dissolved oxygen in the absence of light challenges the traditional assumption that biological oxygen production is limited to daylight hours, particularly in tropical coral reefs. Here we show: 1) the widespread nature of this phenomenon, 2) its reproducibility across tropical marine ecosystems, 3) the influence of biotic and abiotic factors on this phenomenon across numerous datasets, and 4) the observation of nighttime oxygen spikes in vitro from incubations of coral reef benthic organisms. The data from this study demonstrate that in addition to physical forcing, biological processes are likely responsible for increasing dissolved oxygen at night. Additionally, we demonstrate an association between these nighttime oxygen spikes and measures of both net community calcification and net community production. These results suggest that nighttime oxygen spikes are likely a biological response associated with increased respiration and are most prominent in communities dominated by calcifying organisms.

Date
2017
Data type
Other resources
Theme
Research and monitoring
Geographic location
Curacao