Mark J. A. Vermeij

Millimeter-scale topography enables coral larval settlement in wave-driven oscillatory flow

Larval settlement in wave-dominated, nearshore environments is the most critical life stage for a vast array of marine invertebrates, yet it is poorly understood and virtually impossible to observe in situ. Using a custom-built flume tank that mimics the oscillatory fluid flow over a shallow coral reef, we show that millimeter-scale benthic topography increases the settlement of slow-swimming coral larvae by an order of magnitude relative to flat substrates. Particle tracking velocimetry of flow fields revealed that millimeter-scale ridges introduced regions of flow recirculation that redirected larvae toward the substrate surface and decreased the local fluid speed, effectively increasing the window of time for larvae to settle. In agreement with experiments, computational fluid dynamics modeling and agent-based larval simulations also showed significantly higher settlement on ridged substrates. These findings highlight how physics-based substrate design can create new opportunities to increase larval recruitment for ecosystem restoration.

Date
2022
Data type
Research report
Document
Geographic location
Curacao

Engineered substrates reveal species-specific inorganic cues for coral larval settlement

ABSTRACT: The widespread loss of stony reef-building coral populations has been compounded by the low settlement and survival of coral juveniles. To rebuild coral communities, restoration practitioners have developed workflows to settle vulnerable coral larvae in the laboratory and outplant settled juveniles back to natural and artificial reefs. These workflows often make use of natural biochemical settlement cues, which are presented to swimming larvae to induce settlement. This paper establishes the potential for inorganic cues to complement these known biochemical effects. Settlement substrates were fabricated from calcium carbonate, a material present naturally on reefs, and modified with additives including sands, glasses, and alkaline earth carbonates. Experiments with larvae of two Caribbean coral species revealed additive-specific settlement preferences that were independent of bulk surface properties such as mean roughness and wettability. Instead, analyses of the substrates suggest that settling coral larvae can detect localized topographical features more than an order of magnitude smaller than their body width and can sense and positively respond to soluble inorganic minerals such as silica (SiO2) and strontianite (SrCO3). These findings open a new area of research in coral reef restoration, in which composite substrates can be designed with a combination of natural organic and inorganic additives to increase larval settlement and perhaps also improve post-settlement growth, mineralization, and defense.

Date
2022
Data type
Scientific article
Theme
Education and outreach
Research and monitoring
Geographic location
Curacao

Assisted gene flow using cryopreserved sperm in critically endangered coral

Assisted gene flow (AGF) is a conservation intervention to accelerate
species adaptation to climate change by importing genetic
diversity into at-risk populations. Corals exemplify both the need for
AGF and its technical challenges; corals have declined in abundance,
suffered pervasive reproductive failures, and struggled to adapt to
climate change, yet mature corals cannot be easily moved for breeding,
and coral gametes lose viability within hours. Here, we report
the successful demonstration of AGF in corals using cryopreserved
sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata
eggs from the western Caribbean (Curaçao) with cryopreserved
sperm from genetically distinct populations in the eastern and central
Caribbean (Florida and Puerto Rico, respectively). We then confirmed
interpopulation parentage in the Curaçao–Florida offspring
using 19,696 single-nucleotide polymorphism markers. Thus, we
provide evidence of reproductive compatibility of a Caribbean coral
across a recognized barrier to gene flow. The 6-mo survival of AGF
offspring was 42%, the highest ever achieved in this species, yielding
the largest wildlife population ever raised from cryopreserved
material. By breeding a critically endangered coral across its range
withoutmoving adults, we show that AGF using cryopreservation is
a viable conservation tool to increase genetic diversity in threatened
marine populations.

Date
2021
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities

Abstract

A paramount challenge in coral reef ecology is to estimate the abundance and composition of the communities residing in such complex ecosystems. Traditional 2D projected surface cover estimates neglect the 3D structure of reefs and reef organisms, overlook communities residing in cryptic reef habitats (e.g., overhangs, cavities), and thus may fail to represent biomass estimates needed to assess trophic ecology and reef function. Here, we surveyed the 3D surface cover, biovolume, and biomass (i.e., ash-free dry weight) of all major benthic taxa on 12 coral reef stations on the island of Curaçao (Southern Caribbean) using structure-from-motion photogrammetry, coral point counts, in situ measurements, and elemental analysis. We then compared our 3D benthic community estimates to corresponding estimates of traditional 2D projected surface cover to explore the differences in benthic community composition using different metrics. Overall, 2D cover was dominated (52 ± 2%, mean ± SE) by non-calcifying phototrophs (macroalgae, turf algae, benthic cyanobacterial mats), but their contribution to total reef biomass was minor (3.2 ± 0.6%). In contrast, coral cover (32 ± 2%) more closely resembled coral biomass (27 ± 6%). The relative contribution of erect organisms, such as gorgonians and massive sponges, to 2D cover was twofold and 11-fold lower, respectively, than their contribution to reef biomass. Cryptic surface area (3.3 ± 0.2 m2 m−2planar reef) comprised half of the total reef substrate, rendering two thirds of coralline algae and almost all encrusting sponges (99.8%) undetected in traditional assessments. Yet, encrusting sponges dominated reef biomass (35 ± 18%). Based on our quantification of exposed and cryptic reef communities using different metrics, we suggest adjustments to current monitoring approaches and highlight ramifications for evaluating the ecological contributions of different taxa to overall reef function. To this end, our metric conversions can complement other benthic assessments to generate non-invasive estimates of the biovolume, biomass, and elemental composition (i.e., standing stocks of organic carbon and nitrogen) of Caribbean coral reef communities.

Date
2021
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao