Marit Pistor

The effect of artificial reef design on the attraction of herbivorous fish and on coral recruitment, survival and growth

A B S T R A C T

Fish assemblages of different types of artificial reefs can differ greatly in abundance, biomass and composition, with some reef types harboring over five times more herbivores than others. It is assumed that higher herbivorous fish abundance results in a higher grazing intensity, affecting the benthic community by means of enhanced coral recruitment, survival and growth. Territorial fish species might affect this process by chasing away other fish, especially herbivores. In this study we compared the fish assemblage, territorial behavior and grazing intensity by fish on two artificial reef types: reef balls and layered cakes, differing greatly in their fish assemblage during early colonization. In addition, the effect of artificial reef type on benthic development and coral recruitment, survival and growth, was investigated. Although layered cakes initially harbored higher herbivorous fish biomass, this effect was lost during consecutive monitoring events. This seems to be the result of the higher territorial fish abundance around the layered cakes where almost four times more chasing behavior was recorded compared to the reef balls. This resulted in a more than five times lower fish grazing intensity compared to the reef-ball plots. Although macroalgae were effectively controlled at both reefs, the grazing intensity did not differ enough to cause large enough structural changes in benthic cover for higher coral recruitment, survival or growth. The high turf algae cover, combined with increasing crustose coralline algae and sponge cover likely explained reduced coral development. We recommend further research on how to achieve higher grazing rates for improved coral development on artificial reefs, for example by facilitating invertebrate herbivore. 

Date
2023
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Saba
St. Eustatius

High peak settlement of Diadema antillarum on different artificial collectors in the Eastern Caribbean

The massive die-off of the herbivorous sea urchin Diadema antillarum in 1983 and 1984 resulted in phase shifts on Caribbean coral reefs, where macroalgae replaced coral as the most dominant benthic group. Since then, D. antillarum recovery has been slow to non-existent on most reefs. Studying settlement rates can provide insight into the mechanisms constraining the recovery of D. antillarum, while efficient settlement collectors can be used to identify locations with high settlement rates and to collect settlers for restoration practices. The aim of this study was to compare pre and post die-off settlement rates and to determine possible settlement peaks in the Eastern Caribbean island of St. Eustatius. Additionally, we aimed to determine the effectiveness and reproducibility of five different settlement collectors for D. antillarum. D. antillarum settlement around St. Eustatius was highest in May, June and August and low during the rest of the study. Before the die-off, settlement recorded for Curaçao was high throughout the year and was characterized by multiple settlement peaks. Even though peak settlement rates in this study were in the same order of magnitude as in Curaçao before the die-off, overall yearly settlement rates around St. Eustatius were still lower. As no juvenile or adult D. antillarum were observed on the reefs around the settlement collectors, it is likely that other factors are hindering the recovery of the island's D. antillarum populations. Of all five materials tested, bio ball collectors were the most effective and reproducible method to monitor D. antillarum settlement. Panels yielded the least numbers of settlers, which can partly be explained by their position close to the seabed. Settler collection was higher in mid-water layers compared to close to the bottom and maximized when strings of bio balls were used instead of clumps. We recommend research into the feasibility of aiding D. antillarum recovery by providing suitable settlement substrate during the peak of the settlement season and adequate shelter to increase post-settlement survival of settlers. The bio ball collectors could serve as a suitable settlement substrate for this new approach of assisted natural recovery.

Date
2022
Data type
Scientific article
Theme
Education and outreach
Research and monitoring
Geographic location
St. Eustatius