M. Sabrina Pankey

Depth-dependent detritus production in the sponge, Halisarca caerulea

Sponges are important ecological and functional components of coral reefs. Recently, a new hypothesis about the functional ecology of sponges in organic matter recycling pathways, the sponge-loop hypothesis, in which dissolved and particulate organic matter is taken up by sponges and shunted to higher trophic levels as detritus, has been proposed and demonstrated for shallow (< 30 m) cryptic species. However, support for this hypothesis at mesophotic depths (∼ 30–150 m) is lacking. Here, we examined detritus production, a prerequisite of the sponge loop pathway, in a reciprocal transplant experiment, using Halisarca caerulea from water depths of 10 and 50 m. Detritus production was significantly lower in mesophotic sponges compared to shallow samples of H. caerulea. Additionally, detritus production rates in transplanted sponges moved in the direction of rates observed for resident conspecifics. The microbiome of these sponge populations was also significantly different between shallow and mesophotic depths, and the microbial communities of the transplanted sponges also shifted in the direction of their new depth in 10 d largely driven by changes in OxyphotobacteriaAcidimicrobiiaNitrososphaeriaNitrospiraDeltaproteobacteria, and Dadabacteriia. This occurred in an environment where the availability of both dissolved and particulate trophic resources changed significantly across the shallow to mesophotic depth gradient where these sponge populations were found. These results suggest that changes in sponge detritus production are primarily driven by differential quality and quantity of trophic resources, as well as their utilization by the sponge host, and its microbiome, along the shallow to mesophotic depth gradient.

Date
2019
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Community structure of coral microbiomes is dependent on host morphology

Abstract

Background: The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinof lagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of f ixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai’i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities.

Results: The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai’i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community.

Conclusions: The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral “super trait,” on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown.

Date
2022
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao