Kathryn Lohr

Assisted gene flow using cryopreserved sperm in critically endangered coral

Assisted gene flow (AGF) is a conservation intervention to accelerate
species adaptation to climate change by importing genetic
diversity into at-risk populations. Corals exemplify both the need for
AGF and its technical challenges; corals have declined in abundance,
suffered pervasive reproductive failures, and struggled to adapt to
climate change, yet mature corals cannot be easily moved for breeding,
and coral gametes lose viability within hours. Here, we report
the successful demonstration of AGF in corals using cryopreserved
sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata
eggs from the western Caribbean (Curaçao) with cryopreserved
sperm from genetically distinct populations in the eastern and central
Caribbean (Florida and Puerto Rico, respectively). We then confirmed
interpopulation parentage in the Curaçao–Florida offspring
using 19,696 single-nucleotide polymorphism markers. Thus, we
provide evidence of reproductive compatibility of a Caribbean coral
across a recognized barrier to gene flow. The 6-mo survival of AGF
offspring was 42%, the highest ever achieved in this species, yielding
the largest wildlife population ever raised from cryopreserved
material. By breeding a critically endangered coral across its range
withoutmoving adults, we show that AGF using cryopreservation is
a viable conservation tool to increase genetic diversity in threatened
marine populations.

Data type
Scientific article
Research and monitoring
Geographic location