Hays, G.C.

Climate change and temperature-linked hatchling mortality at a globally important sea turtle nesting site

The study of temperature-dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery—the Cape Verde Islands—we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long-term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature-dependent sex determination to a focus on temperature-linked hatchling mortalities.

Date
2017
Data type
Scientific article
Theme
Research and monitoring

Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change

A 200-year time series of incubation temperatures and primary sex ratios for green (Chelonia mydas), hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys coriacea) sea turtles nesting in St. Eustatius (North East Caribbean)was created by combining sand temperature measurementswith historical and current environmental data and climate projections. Rainfall and spring tides were important because they cooled the sand and lowered incubation temperatures. Mean annual sand temperatures are currently 31.0 °C (SD = 1.6) at the nesting beach but show seasonality, with lower temperatures (29.1–29.6 °C) during January–March and warmer temperatures (31.9–33.3 °C) in June–August. Results suggest that all three species have had female-biased hatchling production for the past decades with less than 15.5%, 36.0%, and 23.7% males produced every year for greens, hawksbills and leatherbacks respectively since the late nineteenth century. Global warming will exacerbate this female-skew. For example, projections indicate that only 2.4% of green turtle hatchlings will be males by 2030, 1.0% by 2060, and 0.4% by 2090. On the other hand, future changes to nesting phenology have the potential to mitigate the extent of feminisation. In the absence of such phenological changes, management strategies to artificially lower incubation temperatures by shading nests or relocating nest clutches to deeper depths may be the only way to prevent the localised extinction of these turtle populations. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
St. Eustatius