Harvell, C.D.

Coral reefs under rapid climate change and ocean acidification

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided. 

Date
2007
Data type
Scientific article
Theme
Research and monitoring
Journal

Population structure of Symbiodinium sp. associated with the common sea fan, Gorgonia ventalina, in the Florida Keys across distance, depth, and time

Abstract: 

Numerous marine invertebrates form endosymbiotic relationships with dinoflagellates in the genus Symbiodinium. However, few studies have examined the fine-scale population structure of these symbionts. Here, we describe the genetic structure of Symbiodinium type ‘‘B1/B184’’ inhabiting the gorgonian Gorgonia ventalina along the Florida Keys. Six polymorphic microsatellite loci were utilized to examine 16 populations along the Upper, Middle, and Lower Keys spanning a range of *200 km. Multiple statistical tests detected significant differentiation in 54–92% of the 120 possible pairwise comparisons between localities, suggesting low levels of gene flow in these dinoflagellates. In general, populations clustered by geographic region and/or reefs in close proximity. Some of the sharpest population differentiation was detected between Symbiodinium from deep and shallow sites on the same reef. In spite of the high degree of population structure, alleles and genotypes were shared among localities, indicating some connectivity between Symbiodinium populations associated with G. ventalina. 

Date
2009
Data type
Scientific article
Journal