Haber, E.A.

High spatial resolution mapping identifies habitat characteristics of the invasive vine Antigonon leptopus on St. Eustatius (Lesser Antilles)

On the Caribbean island of St. Eustatius, Coralita (Antigonon leptopus) is an aggressive invasive vine posing major biodiversity conservation concerns. The generation of distribution maps can address these conservation concerns by helping to elucidate the drivers of invasion. We test the use of support vector machines to map the distribution of Coralita on St. Eustatius at high spatial resolution and use this map to identify potential landscape and geomorphological factors associated with Coralita presence. This latter step was performed by comparing the actual distribution of Coralita patches to a random distribution of patches. To train the support vector machine algorithm, we used three vegetation indices and seven texture metrics derived from a 2014 WorldView‐2 image. The resulting map shows that Coralita covered 3.18% of the island in 2014, corresponding to an area of 64 ha. The mapped distribution was highly accurate, with 93.2% overall accuracy (Coralita class producer's accuracy: 76.4%, user's accuracy: 86.2%). Using this classification map, we found that Coralita is not randomly distributed across the landscape, occurring significantly closer to roads and drainage channels, in areas with higher accumulated moisture, and on flatter slopes. Coralita was found more often than expected in grasslands, disturbed forest, and urban areas but was relatively rare in natural forest. These results highlight the ability of high spatial resolution data from sensors such as WorldView‐2 to produce accurate invasive species, providing valuable information for predicting current and future spread risks and for early detection and removal plans.

 

Date
2021
Data type
Scientific article
Theme
Research and monitoring
Document
Journal
Geographic location
St. Eustatius

Spatially explicit removal strategies increase the efficiency of invasive plant species control

Effective management strategies are needed to control expansion of invasive alien plant species and attenuate economic and ecological impacts. While previous theoretical studies have assessed optimal control strategies that balance economic costs and ecological benefits, less attention has been paid to the ways in which the spatial characteristics of individual patches may mediate the effectiveness of management strategies. We developed a spatially explicit cellular automaton model for invasive species spread, and compared the effectiveness of seven control strategies. These control strategies used different criteria to prioritize the removal of invasive species patches from the landscape. The different criteria were related to patch size, patch geometry, and patch position within the landscape. Effectiveness of strategies was assessed for both seed dispersing and clonally expanding plant species. We found that, for seed-dispersing species, removal of small patches and removal of patches that are isolated within the landscape comprised relatively effective control strategies. For clonally expanding species, removal of patches based on their degree of isolation and their geometrical properties comprised relatively effective control strategies. Subsequently, we parameterized the model to mimic the observed spatial distribution of the invasive species Antigonon leptopus on St. Eustatius (northern Caribbean). This species expands clonally and also disperses via seeds, and model simulations showed that removal strategies focusing on smaller patches that are more isolated in the landscape would be most effective and could increase the effectiveness of a 10-yr control strategy by 30–90%, as compared to random removal of patches. Our study emphasizes the potential for invasive plant species management to utilize recent advances in remote sensing, which enable mapping of invasive species at the high spatial resolution needed to quantify patch geometries. The presented results highlight how this spatial information can be used in the design of more effective invasive species control strategies

 

Date
2021
Data type
Scientific article
Theme
Governance
Research and monitoring
Document
Geographic location
St. Eustatius

A comparison of two different mapping methods for identifying the current distribution of the invasive vine (Antigonon leptopus, Hook & Arn.) on the Caribbean island of St. Eustatius

Research Aim

We compared the following two methods for creating a map of the current distribution of Coralita:

1) Observer/Expert-based ground survey map, and
2) Semi-automated vegetation classi cation using satellite imagery. 

Date
2017
Data type
Other resources
Document
Geographic location
St. Eustatius