Haan, J. den

Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae

Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not always, increases with increased light availability. Nutrient availability was proposed as an additional factor to explain these conflicting observations. To address this proposed but untested hypothesis, we documented the interactive contributions of light and nutrient availability on the release of DOC by turf algae. DOC release rates and oxygen production were quantified in incubation experiments at two light levels (full and reduced light) and two nutrient treatments (natural seawater and enriched seawater). In natural seawater, DOC release at full light was four times higher than at reduced light. When nutrients were added, DOC release rates at both light levels were similar to the natural seawater treatment at full light. Our results therefore show that low light in combination with low nutrient availability reduces the release of DOC by turf algae and that light and nutrient availability interactively determine DOC release rates by this important component of Caribbean reef communities.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Fast Detection of Nutrient Limitation in Macroalgae and Seagrass with Nutrient-Induced Fluorescence

Abstract:

Background: Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.

Methodology & Principal Findings: We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non- limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.

Conclusions & Significance: Our extension of the NIFT technique offers an easy and fast method (30–60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao