Frade, P.R.

Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

Comparative studies on the distribution of archaeal versus bacterial communities associ- ated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spa- tial gradients and between reef locations. We used microbial community profiling (terminal- restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral spe- cies (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T- RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal com- munity composition was solely determined by the habitat. This study highlights that mucus- associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. 

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60–100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a “deep-water” lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with “deep-specialist” photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2–3 cm yr −1), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Document
Geographic location
Curacao

Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species

Bathymetric distributions of photosynthetic marine invertebrate species are relatively well studied, however the importance of symbiont zonation (i.e. hosting of distinct algal endosymbiont communities over depth) in determining these depth distributions still remains unclear. Here, we assess the prevalence of symbiont zonation in tropical scleractinian corals by genotyping the Symbiodinium of the 25 most common species over a large depth range (down to 60 m) on a Caribbean reef. Symbiont depth zonation was found to be common on a reef-wide scale (11 out of 25 coral species), and a dominant feature in species with the widest depth distributions. With regards to reproductive strategy, symbiont zonation was more common in broadcasting species, which also exhibited a higher level of polymorphism in the symbiont zonation (i.e. number of different Symbiodinium profiles involved). Species with symbiont zonation exhibited significantly broader depth distributions than those without, highlighting the role of symbiont zonation in shaping the vertical distributions of the coral host. Overall, the results demonstrate that coral reefs can consist of highly structured communities over depth when considering both the coral host and their obligate photosymbionts, which probably has strong implications for the extent of connectivity between shallow and mesophotic habitats. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef

Abstract

Background: Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef.

Results: The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes.

Conclusions: Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Comparison between Colony Morphology and Molecular Phylogeny in the Caribbean Scleractinian Coral Genus Madracis

Abstract:

A major challenge in coral biology is to find the most adequate and phylogenetically informative characters that allow for distinction of closely related coral species. Therefore, data on corallite morphology and genetic data are often combined to increase phylogenetic resolution. In this study, we address the question to which degree genetic data and quantitative information on overall coral colony morphologies identify similar groupings within closely related morphospecies of the Caribbean coral genus Madracis. Such comparison of phylogenies based on colony morphology and genetic data will also provide insight into the degree to which genotype and phenotype overlap. We have measured morphological features of three closely related Caribbean coral species of the genus Madracis (M. formosa, M. decactis and M. carmabi). Morphological differences were then compared with phylogenies of the same species based on two nuclear DNA markers, i.e. ATPSa and SRP54. Our analysis showed that phylogenetic trees based on (macroscopical) morphological properties and phylogenetic trees based on DNA markers ATPSa and SRP54 are partially similar indicating that morphological characteristics at the colony level provide another axis, in addition to commonly used features such as corallite morphology and ecological information, to delineate genetically different coral species. We discuss this new method that allows systematic quantitative comparison between morphological characteristics of entire colonies and genetic data. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao