Felis, T.

Potential and limits of combining studies of coarse- and fine-grained sediments for the coastal event history of a Caribbean carbonate environment

The coastal deposits of Bonaire, Leeward Antilles, are among the most studied archives for extreme-wave events (EWEs) in the Caribbean. Here we present more than 400 electron spin resonance (ESR) and radiocarbon data on coarse-clast deposits from Bonaire’s eastern and western coasts. The chronological data are compared to the occurrence and age of fine-grained extremewave deposits detected in lagoons and floodplains. Both approaches are aimed at the identification of EWEs, the differentiation between extraordinary storms and tsunamis, improving reconstructions of the coastal evolution, and establishing a geochronological framework for the events. Although the combination of different methods and archives contributes to a better understanding of the interplay of coastal and archive-related processes, insufficient separation, superimposition or burying of coarse-clast deposits and restricted dating accuracy limit the use of both fine grained and coarse-clast geoarchives to unravel decadal- to centennial-scale events. At several locations, distinct landforms are attributed to different coastal flooding events interpreted to be of tsunamigenic origin. Coastal landforms on the western coast have significantly been influenced by (sub)-recent hurricanes, indicating that formation of the coarse-clast deposits on the eastern coast is likely to be related to past events of higher energy.

 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Last interglacial hydroclimate seasonality reconstructed from tropical Atlantic corals

The seasonality of hydroclimate during past periods of warmer than modern global temperatures is a critical component for understanding future climate change scenarios. Although partially analogous to these scenarios, the last interglacial (LIG, Marine Isotope Stage 5e, ~127-117 ka) is a popular test-bed. We present coral δ18O monthly resolved records from multiple Bonaire (southern Caribbean) fossil corals (Diploria strigosa) that date to between 130 and 118 ka. These records represent up to 37 years and cover a total of 105 years, offering insights into the seasonality and characteristics of LIG tropical Atlantic hydroclimate. Our coral δ18O records and available coral Sr/Ca- sea surface temperature (SST) records reveal new insights into the variable relationship between the seasonality of tropical Atlantic seawater δ18O (δ18Oseawater) and SST. Coral δ18O seasonality is found to co-vary with SST and insolation seasonality throughout the LIG, culminating in significantly higher than modern values at 124 and 126 ka. At 124 ka, we reconstruct a two month lead of the coral δ18O vs. the Sr/Ca-SST annual cycle and increased δ18Oseawater seasonality. A fully-coupled climate model simulates a concomitant increase of southern Caribbean Sea summer precipitation and depletion of summer δ18Oseawater. LIG regional hydroclimate differed from today's semiarid climate with a minor rainy season during winter. Cumulatively our coral δ18O, δ18Oseawater and model findings indicate a mid-LIG northward expansion of the South American Intertropical Convergence Zone into the southern Caribbean Sea, highlighting the importance of regional aspects within model and proxy reconstructions of LIG hydroclimate seasonality.

Date
2018
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Tides in the Last Interglacial: insights from notch geometry and palaeo tidal models in Bonaire, Netherland Antilles

The study of past sea levels relies largely on the interpretation of sea-level indicators. Palaeo tidal notches are considered as one of the most precise sea-level indicators as their formation is closely tied to the local tidal range. We present geometric measurements of modern and palaeo (Marine Isotope Stage (MIS) 5e) tidal notches on Bonaire (southern Caribbean Sea) and results from two tidal simulations, using the present-day bathymetry and a palaeo-bathymetry. We use these two tools to investigate changes in the tidal range since MIS 5e. Our models show that the tidal range changes most significantly in shallow areas, whereas both, notch geometry and models results, suggest that steeper continental shelves, such as the ones bordering the island of Bonaire, are less affected to changes in tidal range in conditions of MIS 5e sea levels. We use our data and results to discuss the importance of considering changes in tidal range while reconstructing MIS 5e sea level histories, and we remark that it is possible to use hydrodynamic modelling and notch geometry as first-order proxies to assess whether, in a particular area, tidal range might have been different in MIS 5e with respect to today.

Date
2017
Data type
Other resources
Geographic location
Bonaire

Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records

Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and δ18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral δ18O records are used as a proxy for the oxygen isotopic composition of seawater (δ18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual δ18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual δ18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
Error | Dutch Caribbean Biodiversity Database

Error

The website encountered an unexpected error. Please try again later.