Chamberland, V.F.

Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species.

When juveniles must tolerate harsh environments early in life, the disproportionate success of certain phenotypes across multiple early life stages will dramatically influence adult community composition and dynamics. In many species, large offspring have a higher tolerance for stressful environments than do smaller conspecifics (parental effects). However, we have a poor understanding of whether the benefits of increased parental investment carry over after juveniles escape harsh environments or progress to later life stages (latent effects). To investigate whether parental effects and latent effects interactively influence offspring success, we determined the degree to which latent effects of harsh abiotic conditions are mediated by offspring size in two stony coral species. Larvae of both species were sorted by size class and exposed to relatively high-temperature or low-salinity conditions. Survivorship was quantified for six days in these stressful environments, after which surviving larvae were placed in ambient conditions and evaluated for their ability to settle and metamorphose. We subsequently assessed long-term post-settlement survival of one species in its natural environment. Following existing theory, we expected that, within and between species, larger offspring would have a higher tolerance for harsh environmental conditions than smaller offspring. We found that large size did enhance offspring performance in each species. However, large offspring size within a species did not reduce the proportional, negative latent effects of harsh larval environments. Furthermore, the coral species that produces larger offspring was more, not less, prone to negative latent effects. We conclude that, within species, large offspring size does not increase resistance to latent effects. Comparing between species, we conclude that larger offspring size does not inherently confer greater robustness, and we instead propose that other life history characteristics such as larval duration better predict the tolerance of offspring to harsh and variable abiotic conditions. Additionally, when considering how stressful environments influence offspring performance, studies that only evaluate direct effects may miss crucial downstream (latent) effects on juveniles that have significant consequences for long-term population dynamics.

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal

New Seeding Approach Reduces Costs and Time to Outplant Sexually Propagated Corals for Reef Restoration

The use of sexually propagated corals is gaining popularity as an approach for reef restoration. However, manually attaching substrates with recently settled corals to the reef using binding materials is both time-consuming and expensive, limiting the use of this technique to small spatial scales. We present a novel approach whereby young corals are ‘seeded’ on the reef without the need for manual attachment to the benthos. We tested two tetrapod-shaped concrete substrates (7.9 and 9.8 cm in diameter) on which coral larvae were settled. The tetrapods were e ciently deployed by wedging them in reef crevices, in 1.5 to 7% of the time required for traditional outplanting techniques. Seeding tetrapods was most e ective in reefs with moderately to highly complex topographies, where they rapidly became lodged in crevices or cemented to the benthos by encrusting organisms. After one year, average recruit survival was 9.6% and 67% of tetrapods still harboured at least one coral colony, and overall, this approach resulted in a 5 to 18 fold reduction in outplanting costs compared to common outplanting methods. This seeding approach represents a substantial reduction in costs and time required to introduce sexually propagated corals to reefs, and could possibly enable larger scale reef restoration. 

Date
2017
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Costs and benefits of maternally inherited algal symbionts in coral larvae

Many marine invertebrates provide their offspring with symbionts. Yet the consequences of maternally inherited symbionts on larval fitness remain largely unexplored. In the stony coral Favia fragum (Esper 1797), mothers produce larvae with highly variable amounts of endosymbiotic algae, and we examined the implications of this variation in symbiont density on the performance of F. fragum larvae under different environmental scenarios. High symbiont densities prolonged the period that larvae actively swam and searched for suitable settlement habitats. Thermal stress reduced survival and settlement success in F. fragum larvae, whereby larvae with high symbiont densities suffered more from non-lethal stress and were five times more likely to die compared with larvae with low symbiont densities. These results show that maternally inherited algal symbionts can be either beneficial or harmful to coral larvae depending on the environmental conditions at hand, and suggest that F. fragum mothers use a bet-hedging strategy to minimize risks associated with spatio-temporal variability in their offspring's environment.

Date
2017
Data type
Scientific article
Geographic location
Curacao

The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae)

Despite the fact that most of the severe demographic bottlenecks in coral populations occur during their earliest life stages, information on the reproductive biology and early life history traits of many coral species is limited and often inferred from adult traits only. This study reports on several atypical aspects of the reproductive biology and early life ecology of the grooved brain coral, Diploria labyrinthiformis (Linnaeus, 1758), a conspicuous reef-building species on Caribbean reefs. The timing of gamete release of D. labyrinthiformis was monitored in Curaçao over eight consecutive months, and embryogenesis, planulae behavior, and settlement rates were observed and quantified. We further studied growth and symbiont acquisition in juvenile D. labyrinthiformis for 3.5 yr and compared settler survival under ambient and nutrient-enriched conditions in situ. Notably, D. labyrinthiformis reproduced during daylight hours in six consecutive monthly spawning events between May and September 2013, with a peak in June. This is the largest number of reproductive events per year ever observed in a broadcast-spawning Caribbean coral species. In settlement experiments, D. labyrinthiformis planulae swam to the bottom of culture containers 13 h after spawning and rapidly settled when provided with settlement cues (42% within 14 h). After 5 months, the survival and growth rates of settled juveniles were 3.7 and 1.9 times higher, respectively, for settlers that acquired zooxanthellae within 1 month after settlement, compared to those that acquired symbionts later on. Nutrient enrichment increased settler survival fourfold, but only for settlers that had acquired symbionts within 1 month after settlement. With at least six reproductive events per year, a short planktonic larval phase, high settlement rates, and a positive response to nutrient enrichment, the broadcast-spawning species D. labyrinthiformisdisplays a range of reproductive and early life-history traits that are more often associated with brooding coral species, illustrating that classical divisions of coral species by reproductive mode alone do not always reflect the true biology and ecology of their earliest life stages.

 

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes, Global Ecology and Conservation

Elkhorn coral (Acropora palmata) populations provide important ecological functions on shallow Caribbean reefs, many of which were lost when a disease reduced their abundance by more than 95% beginning in the mid-1970s. Since then, a lack of significant recovery has prompted rehabilitation initiatives throughout the Caribbean. Here, we report the first successful outplanting and long-term survival of A. palmatasettlers reared from gametes collected in the field. A. palmata larvae were settled on clay substrates (substrate units) and either outplanted on the reef two weeks after settlement or kept in a land-based nursery. After 2.5 years, the survival rate of A. palmata settlers outplanted two weeks after settlement was 6.8 times higher (3.4%) than that of settlers kept in a land-based nursery (0.5%). Furthermore, 32% of the substrate units on the reef still harbored one or more well-developed recruit compared to 3% for substrate units kept in the nursery. In addition to increasing survival, outplanting A. palmata settlers shortly after settlement reduced the costs to produce at least one 2.5-year-old A. palmataindividual from $325 to $13 USD. Thus, this study not only highlights the first successful long-term rearing of this critically endangered coral species, but also shows that early outplanting of sexually reared coral settlers can be more cost-effective than the traditional approach of nursery rearing for restoration efforts aimed at rehabilitating coral populations.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Crude oil contamination interrupts settlement of coral larvae after direct exposure ends

Oil spills cause damage to marine wildlife that lasts well past their immediate aftermath. Marine offspring that must settle and metamorphose to reach adulthood may be particularly prone to harm if the legacy of oil exposure interrupts later transitions across life stages. Following an oil spill on Curaçao, we found that oil-contaminated seawater reduced settlement of 2 coral species by 85% and 40% after exposure had ended. The effect of contamination on settlement was more severe than any direct or latent effects on survival. Therefore, oil exposure reduces the ability of corals to transition to their adult life stage, even after they move away from oil contamination. This interruption of the life cycle likely has severe consequences for recruitment success in these foundational and threatened organisms. Latent, sublethal, and behavioral effects on marine organisms—as shown in this study—are not commonly considered during oil-spill impact assessments, increasing the likelihood that harm to marine species goes underestimated or unmeasured.

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Document
Geographic location
Curacao