Bak, R.P.M.

Long-term change in coral communities along depth gradients over leeward reefs in the Netherlands Antilles

Reef slope coral communities were surveyed for long-term (20 years) changes in scleractinian coral cover, numbers of coral colonies and species richness, over the time intervals between the years 1973, 1983 and 1992. We compare such long-term structural changes in the communities at depths of 10, 20, 30 and 40 m. Our data are based on series of photographic records of permanent quadrats, a total of 36 m2 reef bottom at each depth, along four transects on the leeward coasts of the islands of Curacao and Bonaire. We summarize the changes in the permanent quadrats over time to demonstrate the main trends in the data set and, to understand the significance of the data for the reef community, test the results as effects of time and depth using mixed model ANOVA’s. Changes in numbers of coral colonies and coral cover were a function of depth. Number of coral colonies decreased significantly at depths of 10, 20 and 30 m, but not at 40 m. Coral cover decreased significantly at 10 and 20 m, but not at 30 and 40 m. Diversity (species richness) decreased through the years independent of depth. There were no consistent differences between the two 10-year time-intervals. These results confirm earlier observations of coral mortality and spatial mobility which showed the deep reef (30, 40 m) as a much more constant environment than the relatively disturbed shallower reef (10, 20 m).

Date
1995
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef

Abstract

Background: Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef.

Results: The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes.

Conclusions: Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Comparison between Colony Morphology and Molecular Phylogeny in the Caribbean Scleractinian Coral Genus Madracis

Abstract:

A major challenge in coral biology is to find the most adequate and phylogenetically informative characters that allow for distinction of closely related coral species. Therefore, data on corallite morphology and genetic data are often combined to increase phylogenetic resolution. In this study, we address the question to which degree genetic data and quantitative information on overall coral colony morphologies identify similar groupings within closely related morphospecies of the Caribbean coral genus Madracis. Such comparison of phylogenies based on colony morphology and genetic data will also provide insight into the degree to which genotype and phenotype overlap. We have measured morphological features of three closely related Caribbean coral species of the genus Madracis (M. formosa, M. decactis and M. carmabi). Morphological differences were then compared with phylogenies of the same species based on two nuclear DNA markers, i.e. ATPSa and SRP54. Our analysis showed that phylogenetic trees based on (macroscopical) morphological properties and phylogenetic trees based on DNA markers ATPSa and SRP54 are partially similar indicating that morphological characteristics at the colony level provide another axis, in addition to commonly used features such as corallite morphology and ecological information, to delineate genetically different coral species. We discuss this new method that allows systematic quantitative comparison between morphological characteristics of entire colonies and genetic data. 

Date
2013
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Curacao

Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao

Abstract:

Recruitment of the sea urchin Diadema antillarum philippi, 1845 was studied on artificial recruitment panels along the leeward coast of the island of Curaçao, southern Caribbean. data were compared with historical data from the same coast that were collected before (1982–1983) and after (1984) the Caribbean-wide mass mortality of Diadema in October 1983. Average recruitment rates observed in 2005 were equal to 2.2 times lower compared to those observed before the D. antillarum die-off (1982 and 1983), but 56.5 times higher than those observed after the die-off in 1984. The increase in recruitment rates between 1984 and 2005 was 5–51 times greater than the increase in abundance of adult individuals over the same period. This suggests that despite the largely recovered recruitment rates of this important reef herbivore, unknown sources of high post-settlement mortality currently prevent a similar recovery of its adult population. 

Date
2010
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Coral reefs and their zonation in the Netherlands Antilles

Although coral reefs are well developed in the Leeward islands of the Netherlands Antilles, they are poorly developed in the Windward group. Coral communities are common in the Dutch Windward islands, but no structural reefs have been observed. Flat, sandy bottoms there seem to prevent reef development, as is also the case on large parts of the southwest coast of Aruba.

The zonation of corals on the reefs, with respect to depth, distance from shore, and conformation to the bottom, resembles that of other Caribbean reefs. Density of living-coral cover ranges in the several zones from nearly zero to almost 100%. Below 20 to 25 m on the forereef slope the corals are areally less abundant than crustose coralline algae. Generic diversity of hermatypic corals is comparable in the Leeward and Windward groups of the Dutch islands, with 24 and 23 genera present, respectively. These numbers are comparable to those of other highly diverse reefs in the Caribbean. The number of species in the Windward group, however, is relatively low. The differences in abundance of coral genera (and species) throughout the Caribbean needs more thorough investigation.

Date
1977
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
St. Eustatius
St. Maarten
Author

Coral growth rates revisited after 31 years: What is causing lower extension rates in Acropora palmata?

Linear extension of branches in the same Acropora palmata (Lamarck, 1816) population in Curaçao was measured, employing exactly the same methods, in 1971–1973 and in 2002–2004, and the resulting coral growth rates are compared. Linear growth shows the same pattern over seasons in both periods with growth being significantly higher in summer than in winter. Growth in the 2002–2004 time interval was significantly slower than in 1971–1973. Mean monthly growth ranged from 0.69 cm (winter) to 0.81 cm (summer) in 1971–1973 and from 0.62 cm (winter) to 0.75 cm (summer) in 2002–2004. This means that linear growth rates in 2002–2004 were 7.2% lower in summer and 10.7% lower in winter compared with 1971–1973. Considering possible causative environmental factors relating to these decreases in growth rate, we cannot preclude the possibility that a change in ocean pH could be responsible for the drop in extension rate.

Date
2009
Data type
Scientific article
Theme
Research and monitoring

Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire

Coral reefs are thought to be in worldwide decline but available data are practically limited to reefs shallower than 25 m. Zooxanthellate coral communities in deep reefs (30–40 m) are relatively unstudied. Our question is: what is happening in deep reefs in terms of coral cover and coral mortality? We compare changes in species composition, coral mortality, and coral cover at Caribbean (Curacao and Bonaire) deep (30–40 m) and shallow reefs (10–20 m) using long-term (1973–2002) data from permanent photo quadrats. About 20 zoo- xanthellate coral species are common in the deep-reef communities, dominated by Agaricia sp., with coral cover up to 60%. In contrast with shallow reefs, there is no decrease in coral cover or number of coral colonies in deep reefs over the last 30 years. In deep reefs, non- agaricid species are decreasing but agaricid domination will be interrupted by natural catastrophic mortality such as deep coral bleaching and storms. Temperature is a vastly fluctuating variable in the deep-reef environ- ment with extremely low temperatures possibly related to deep-reef bleaching. 

Date
2005
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Bonaire
Curacao