Bak, R.P.M.

Commentary: Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean

A Commentary on
Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean

by Steneck, R. S., Arnold, S. N., Boenish, R., de León, R., Mumby, P. J., Rasher, D. B., et al. (2019) Front. Mar. Sci. 6:265. doi: 10.3389/fmars.2019.00265

 

A closer look at the methods of Steneck et al. (2019) reveals two issues of concern in making comparisons between the authors' estimate of coral cover and other published estimates.

  • First, their method of estimating coral cover differs from conventional methods.
  • Second, contrary to the sites sampled by Steneck and co-workers many of our sites have a coral cover of less than 10 percent and none are above 60%. The sites sampled by Steneck and colleagues appear to be a non-random selection of sites and as such should not have been presented as an average for Bonaire
Date
2020
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community

The distribution and abundance of juvenile corals were examined at depths from 3 to 37 m on the reefs of Curaçao and Bonaire (Netherlands Antilles). Juveniles of Agaricia agaricites were most abundant (60.6%), followed by Helioseris cucullata (8.3%). The large massive corals such as Montastrea annularis, M. cavernosa and branched species such as Madracis mirabilis and Acropora palmata had few juveniles. This, combined with species characteristics, shows that these species employ very different life history strategies. In some species the abundance of juveniles over the reef paralleled that of larger colonies, but not for example in Agaricia agaricites. The composition of the coral community was apparently no direct function of juvenile abundance. A change in angle of settlement of A. agaricites juveniles with increasing depth, from vertical to horizontal surfaces, seems to reflect the preferred light intensity. We studied the survival of juvenile corals during a half-year period. One-third remained unharmed, one-third died or disappeared, and one-third was limited in growth by factors such as spatial competition. This was the same for all depths, but factors influencing survival varied with depth.

Date
1979
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Bonaire
Curacao

40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats

Over the past decades numerous studies have reported declines in stony corals and, in many cases, phase shifts to fleshy macroalgae. However, long-term studies documenting changes in other benthic reef organisms are scarce. Here, we studied changes in cover of corals, algal turfs, benthic cyanobacterial mats, macroalgae, sponges and crustose coralline algae at four reef sites of the Caribbean islands of Curaçao and Bonaire over a time span of 40 yr. Permanent 9 m2quadrats at 10, 20, 30 and 40 m depth were photographed at 3- to 6-yr intervals from 1973 to 2013. The temporal and spatial dynamics in the six dominant benthic groups were assessed based on image point-analysis. Our results show consistent patterns of benthic community change with a decrease in the cover of calcifying organisms across all sites and depths from 32.6 (1973) to 9.2% (2013) for corals and from 6.4 to 1% for crustose coralline algae. Initially, coral cover was replaced by algal turfs increasing from 24.5 (1973) to 38% around the early 1990s. Fleshy macroalgae, still absent in 1973, also proliferated covering 12% of the substratum approximately 20 yr later. However, these new dominants largely declined in abundance from 2002 to 2013 (11 and 2%, respectively), marking the rise of benthic cyanobacterial mats. Cyanobacterial mats became the most dominant benthic component increasing from a mere 7.1 (2002) to 22.2% (2013). The observed increase was paralleled by a small but significant increase in sponge cover (0.5 to 2.3%). Strikingly, this pattern of degradation and phase change occurred over the reef slope down to mesophotic depths of 40 m. These findings suggest that reefs dominated by algae may be less stable than previously thought and that the next phase may be the dominance of slimy cyanobacterial mats with some sponges.

Date
2017
Data type
Scientific article
Theme
Research and monitoring
Journal
Geographic location
Bonaire
Curacao

Reef photo quandrants of Bonaire and Curacao. Raw analysis material of the 1973-2016 surveys

To follow the health of the coral reefs of Bonaire and Curacao a number of locations on each island are photographed each year since 1973. At each location a 3 m square at up to 4 different depths is recorded and analysed.

Please contact Wageningen Marine Research for more information.

Date
2016
Data type
Raw data
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Long-term Shifts in Coral Communities On Shallow to Deep Reef Slopes of Curaçao and Bonaire: Are There Any Winners?

Tropical coral reefs are among the most biologically diverse and economically important ecosystems on earth. Nevertheless, we found dramatic changes in coral communities on the reef slopes of Curaçao and Bonaire since 1973. Cover and abundance declined for virtually all coral species. The data show a shift from communities dominated by framework building species (e.g., Orbicella spp.) to communities consisting of small opportunistic, phenotypically plastic, species, including few remaining structural colonies. Madracis mirabilis, Porites astreoides, Diploria strigosa, and Agaricia lamarcki are at present modest winners in the coral assemblage, although overall cover declined also for these species. Increased frequency and intensity of events inducing coral mortality and ongoing reduction in suitable hard substratum, provided by the remnants of large colony building species, could reduce the chance of these species to remain winners in the longer run. The observed loss in coral cover and the shift from larger structural to smaller opportunistic species reduced reef carbonate production by 67% and therewith, in combination with a trend toward smaller coral colonies, reef complexity. Alarmingly, reefs at upper-mesophotic depths (30–40 m) did not escape the general degradation of the coral community. The negative effects are larger around densely populated areas where local stressors are adding to degradation caused, for instance, by region wide mass bleaching. Without proper conservation and management this already dramatic degradation will continue and turn more and more coral species into losers.

Date
2016
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Reef photo quandrants of Bonaire and Curacao. Raw photo material of the 1973-2016 surveys

To follow the health of the coral reefs of Bonaire and Curacao a number of locations on each island are photographed each year since 1973. At each location a 3 m square at up to 4 different depths is recorded.

Please contact the DCBD administratorfor access to the raw digital photographs.

 

Date
2016
Data type
Raw data
Theme
Research and monitoring
Geographic location
Bonaire
Curacao

Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60–100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a “deep-water” lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with “deep-specialist” photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2–3 cm yr −1), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management. 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Document
Geographic location
Curacao

Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curacao

The sea urchin Diadema antillarum commonly occurs on Caribbean reefs in densities sufficiently high to influence characteristics such as community composition and reef growth. We observed an outbreak of mass mortality in this species reducing population densities by 98 to 100 %. Mortality spread from the Curacao harbour mouth along the coast, most rapidly advancing in the down-current direction. Our calculations show a pronounced effect on the carbonate budget of the reef. Recovery of Diadema populations may be facilitated by parthenogenesis. There is continuing recruitment on affected reefs, a possible location of the parent population being up-current unaffected reefs of Bonaire.

Date
1984
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Status and Trends of Caribbean Coral Reefs - Part 2, Reports for individual countries and territories

Outbreaks of Acropora and Diadema diseases in the 1970s and early 1980s, overpopulation in the form of too many tourists, and overfishing are the three best predictors of the decline in Caribbean coral cover over the past 30 or more years based on the data available. Coastal pollution is undoubtedly increasingly significant but there are still too little data to tell. Increasingly warming seas pose an ominous threat but so far extreme heating events have had only localized effects and could not have been responsible for the greatest losses of Caribbean corals that had occurred throughout most of the wider Caribbean region by the early to mid 1990s.
In summary, the degradation of Caribbean reefs has unfolded in three distinct phases:
1. Massive losses of Acropora since the mid 1970s to early 1980s due to WBD. These losses are unrelated to any obvious global environmental change and may have been due to introduced pathogens associated with enormous increases in ballast water discharge from bulk carrier shipping since the 1960s.
2. Very large increase in macroalgal cover and decrease in coral cover at most overfished locations following the 1983 mass mortality of Diadema due to an unidentified and probably exotic pathogen. The phase shift in coral to macroalgal dominance reached a peak at most locations by the mid 1990s and has persisted throughout most of the Caribbean for 25 years. Numerous experiments provide a link between macroalgal increase and coral decline. Macroalgae reduce coral recruitment and growth, are commonly toxic, and can induce coral disease.

3. Continuation of the patterns established in Phase 2 exacerbated by even greater overfishing, coastal pollution, explosions in tourism, and extreme warming events that in combination have been particularly severe in the northeastern Caribbean and Florida Keys where extreme bleaching followed by outbreaks of coral disease have caused the greatest declines.
 
In: Status and Trends of Caribbean Coral Reefs: 1970 - 2012. Jackson, J.B.C., Donovan, M.K., Cramer, K.L. Lam, W.. - Washington : Global Reef Monitoring Network, 2014 - p. 211 - 215.
 
Retreived from http://www.wageningenur.nl on April13, 2015

Date
2014
Data type
Book
Theme
Research and monitoring
Geographic location
Aruba
Bonaire
Curacao
Saba
Saba bank
St. Eustatius
St. Maarten

Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curaçao

Lobophora variegata occurs in the eulittoral zone and in deep water on coral reefs in Curaçao. An analysis of the long-term (1979–2006) changes in the vertical distribution of the macroalga in permanent quadrats indicated a significant increase in cover of the deepwater community. In 1998, Lobophora covered 1 and 5% of the quadrats at 20 and 30 m, respectively. By 2006, these values had risen to 25 and 18%, precipitating a shift in abundance of corals and macroalgae at both depths. This increase coincided with losses in coral cover, possibly linked to bleaching, disease and storm-related mortality in deep water plating Agaricia corals. In contrast, macroalgae remained relatively rare (<6% cover) on shallower (10 m) and deeper (40 m) reefs despite declines in coral cover also occurring at these depths, illustrating the depth-dependent dynamics of coral reefs. Several hypotheses are suggested to explain these changes.

Date
2008
Data type
Scientific article
Journal
Geographic location
Curacao